• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Solving Spark Out of Memory Issues When Parsing Large XML Files скачать в хорошем качестве

Solving Spark Out of Memory Issues When Parsing Large XML Files 7 месяцев назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Solving Spark Out of Memory Issues When Parsing Large XML Files
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Solving Spark Out of Memory Issues When Parsing Large XML Files в качестве 4k

У нас вы можете посмотреть бесплатно Solving Spark Out of Memory Issues When Parsing Large XML Files или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Solving Spark Out of Memory Issues When Parsing Large XML Files в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Solving Spark Out of Memory Issues When Parsing Large XML Files

Learn how to efficiently parse large XML files in Apache Spark and avoid out of memory errors during the process. --- This video is based on the question https://stackoverflow.com/q/75204710/ asked by the user 'Rimer' ( https://stackoverflow.com/u/387069/ ) and on the answer https://stackoverflow.com/a/75331778/ provided by the user 'Rimer' ( https://stackoverflow.com/u/387069/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: spark-xml: Crashing out of memory trying to parse single large XML file Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- Solving Spark Out of Memory Issues When Parsing Large XML Files Apache Spark is a powerful tool for handling big data, but it can face challenges when working with large XML files. If you've encountered issues like "out of memory" errors while trying to parse these extensive files, you're not alone. In this guide, we'll explore the problem of processing large XML files with Spark and provide a detailed solution to handle these situations gracefully. The Problem When working with XML files that are compressed and nested, such as the 181MB file mentioned in our example, parsing them with Spark can lead to several issues: Memory Overload: Spark tries to read the entire XML file in a single node to infer its schema. This can overwhelm the memory and cause crashes. Complex Nested Structures: The nested nature of XML schemas can complicate normalization, making it harder to extract data effectively for use in Parquet tables. This challenge arises because Spark requires the entire XML file to be loaded into memory to determine how to break up the data, which creates a bottleneck for large files. The Solution Recursive Parsing To avoid the "out of memory" scenario, we can parse the XML file in a more manageable way. Here’s how to do it: Individual Node Parsing: Instead of loading the entire XML file into memory, use a recursive approach to traverse the XML tree one node at a time. Writing to CSV: As each node is processed, you can append its details into a CSV file, which allows for easier manipulation and storage without the overhead of holding the full XML structure in memory. Implementation Steps Carry out the following steps to implement the solution: Create a Recursive Parsing Method: Write a Scala method that will recursively traverse the XML tree. This method should: Read a node. Extract data from it. Refer back to the parent node's ID for relational data storage. Utilize Scala's XML Traversal: Use Scala's built-in XML libraries for traversing and manipulating XML elements efficiently. Here’s a simple example of how this might look in code: [[See Video to Reveal this Text or Code Snippet]] Create CSV Output: Implement a function to handle the writing of parsed values to CSV, ensuring that each child node is logged along with its parent ID. Configuration Adjustments While the recursive approach will solve the immediate out of memory errors, you might also want to explore these options in Spark configuration: Adjust the spark.driver.memory configuration setting to allocate more memory to the driver if necessary. Opt for more partitions if feasible once the file parsing has been handled properly. Use of Parquet Once your XML has been effectively parsed and written to CSV: You can then read the processed CSV data back into a DataFrame and write it in Parquet format, which is well-suited for handling big data given its columnar storage format. Conclusion Large XML files can pose significant challenges in Apache Spark, often leading to out of memory errors during processing. By implementing a recursive parsing strategy in Scala, you can effectively manage memory usage and avoid crashing. Following this approach, not only can you achieve successful parsing but also ensure your data is normalized into a usable format for further analysis. By understanding both the underlying issue and the proactive steps you can take, you can harness the full power of Spark without running into memory-related roadblocks. Happy coding!

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5