У нас вы можете посмотреть бесплатно Sample Moments (FRM Part 1 2025 – Book 2 – Chapter 5) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Master the sample moments you’ll see on FRM Part 1 – Quantitative Analysis: mean, variance & standard deviation, skewness, kurtosis, quantiles/median, CLT, covariance, correlation, variance-covariance matrix, coskewness, and cokurtosis. By the end, you’ll be able to: • distinguish sample vs population moments • choose unbiased estimators (incl. n–1) • interpret dispersion, asymmetry, tails, and dependence • apply CLT logic to sampling questions For FRM (Part I & Part II) video lessons, study notes, question banks, mock exams, and formula sheets covering all chapters of the FRM syllabus, click on the following link: https://analystprep.com/shop/unlimite... AnalystPrep is a GARP-Approved Exam Preparation Provider for FRM Exams After completing this reading, you should be able to: Estimate the mean, variance, and standard deviation using sample data. Explain the difference between a population moment and a sample moment. Distinguish between an estimator and an estimate. Describe the bias of an estimator and explain what the bias measures. Explain what is meant by the statement that the mean estimator is BLUE. Describe the consistency of an estimator and explain the usefulness of this concept. Explain how the Law of Large Numbers (LLN) and Central Limit Theorem (CLT) apply to the sample mean. Estimate and interpret the skewness and kurtosis of a random variable. Use sample data to estimate quantiles, including the median. Estimate the mean of two variables and apply the CLT. Estimate the covariance and correlation between two random variables. Explain how coskewness and cokurtosis are related to skewness and kurtosis. #FRM #QuantitativeAnalysis #Statistics #RiskManagement #ExamPrep #CentralLimitTheorem #Correlation #AnalystPrep