У нас вы можете посмотреть бесплатно TextCtrl: AI-Powered Scene Text Editing That Actually Works | NeurIPS 2024 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🔤 TextCtrl: Revolutionary Scene Text Editing with Diffusion Models Dive into TextCtrl, a groundbreaking diffusion-based method for Scene Text Editing (STE) presented at NeurIPS 2024. This video explains how TextCtrl achieves unprecedented accuracy in modifying text within images while preserving original style and background integrity. 🎯 What Makes TextCtrl Special? TextCtrl tackles the core challenges of scene text editing through three key innovations: 1️⃣ Dual Style-Structure Guidance Fine-grained Style Disentanglement: Separates text style into font, color, background, foreground, spatial transformation, and stereoscopic effects Robust Glyph Structure: Character-level encoding prevents spelling errors common in standard diffusion models 2️⃣ Glyph-adaptive Mutual Self-Attention (GaMuSa) Maintains source image features through parallel reconstruction Prevents color deviation and texture degradation during inference Uses adaptive integration strategy based on glyph similarity 3️⃣ Superior Performance Outperforms both GAN-based (SRNet, MOSTEL) and diffusion-based methods (DiffSTE, TextDiffuser, AnyText) Generates edited images in ~7 seconds on NVIDIA A6000 GPU Achieves higher SSIM, FID scores, and text accuracy (ACC, NED) 📚 Resources: 🔗 GitHub Repository: https://github.com/weichaozeng/TextCtrl 📄 Research Paper: https://proceedings.neurips.cc/paper_files... 🌐 Project Page: https://github.com/weichaozeng/TextCtrl Authors: Weichao Zeng, Yan Shu, Zhenhang Li, Dongbao Yang, Yu Zhou 🎙️ Note: This video was generated using NotebookLM to make cutting-edge research accessible to everyone. 📖 Key Concepts Covered: Scene Text Editing (STE) fundamentals Diffusion models for image editing Style-structure decomposition Cross-attention mechanisms in U-Net DDIM inversion and reconstruction Glyph-adaptive integration strategies Perfect for ML researchers, computer vision enthusiasts, and anyone interested in AI-powered image editing! #MachineLearning #ComputerVision #DiffusionModels #TextEditing #NeurIPS2024 #AI #DeepLearning #ImageEditing #ResearchExplained 📌 Citation: @article{zeng2024textctrl, title={TextCtrl: Diffusion-based scene text editing with prior guidance control}, author={Zeng, Weichao and Shu, Yan and Li, Zhenhang and Yang, Dongbao and Zhou, Yu}, journal={Advances in Neural Information Processing Systems}, volume={37}, pages={138569--138594}, year={2024} } 💬 Have questions about TextCtrl or scene text editing? Drop them in the comments! 👍 Like and subscribe for more AI research breakdowns!