У нас вы можете посмотреть бесплатно Graph Neural Networks: A gentle introduction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
❤️ Support the channel ❤️ / @aladdinpersson Resources that was very useful for me when learning about GNNs that you can check out for more information and from which I've used in the slides: Cs224w: • Stanford CS224W: Machine Learning wit... https://distill.pub/2021/gnn-intro/ https://distill.pub/2021/understandin... • Graph Neural Networks • Intro to graph neural networks (ML Te... • Theoretical Foundations of Graph Neur... • ICLR 2021 Keynote - "Geometric Deep L... Paid Courses I recommend for learning (affiliate links, no extra cost for you): ⭐ Machine Learning Specialization https://bit.ly/3hjTBBt ⭐ Deep Learning Specialization https://bit.ly/3YcUkoI 📘 MLOps Specialization http://bit.ly/3wibaWy 📘 GAN Specialization https://bit.ly/3FmnZDl 📘 NLP Specialization http://bit.ly/3GXoQuP ✨ Free Resources that are great: NLP: https://web.stanford.edu/class/cs224n/ CV: http://cs231n.stanford.edu/ Deployment: https://fullstackdeeplearning.com/ FastAI: https://www.fast.ai/ 💻 My Deep Learning Setup and Recording Setup: https://www.amazon.com/shop/aladdinpe... GitHub Repository: https://github.com/aladdinpersson/Mac... ✅ One-Time Donations: Paypal: https://bit.ly/3buoRYH ▶️ You Can Connect with me on: Twitter - / aladdinpersson LinkedIn - / aladdin-persson-a95384153 Github - https://github.com/aladdinpersson Timestamps: 0:00 Introduction 1:24 Why graphs 4:13 What is a graph 7:06 Common graph tasks 11:08 Representation of a graph 12:46 - How does a GNN work? 14:35 - Understanding information propagation 17:24 - Key property: Permutation Invariance 19:33 - Key property: Permutation Equivariance 22:22 - Message passing computation 23:53 - GNN Variant: Convolution 26:37 - GNN Variant: Attention 28:39 - Ending