У нас вы можете посмотреть бесплатно 133|张浩千:我们培养了一种微生物,它把塑料降解缩短了299年|格致SELF или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
我们培养了一种微生物,它把塑料降解缩短了299年 生物系统可以看作是一种工程系统,将细胞组装形成组织,最终形成一个复杂的个体。 这种基因元件的组装,称之为基因计算机。 “每个微生物细胞都可以写一个微型计算机”,怎样像组装计算机一样组装生物呢? 演讲者:张浩千 Bluepha首席技术官 大家好,先说说我自己,我本科在北大生命科学学院就读,博士在北大物理学院,所以这种交叉学科的背景使得我会以一个工程师的视角来看待生命科学的问题。 先给大家看一张图片,这是什么呀?是土豆,还是一个发霉的土豆,上面的霉菌可以合成一种化学物质,这种化学物质是一种特效的抗生素。其实可能在座的很多朋友们都知道,目前为止我们人类所有成功商业化的抗生素已经都能够被细菌耐药了。也就是说,假如有一种细菌具有了所有的耐药性,又产生了大规模的爆发,我们是毫无反抗之力的。这种链霉菌上发现的新型抗生素,其实对于解决或者缓解这个问题有非常大的帮助。 再给大家看一张图片,这张图片是在深海海底发现的一种厌氧细菌。这个细菌的细胞膜里有一种化学物质,这个化学物质长得特别像梯子,尤其它的右半部分,它的名字叫梯烷(Ladderane)。它是一种非常非常高能的化学物质,可以用做火箭燃料。 再给大家看一个有趣的东西,左边这张图片是一个细菌,这个细菌它有一个指南针,是真的指南针。这是四氧化三铁颗粒排成一个针状结构,可以根据磁场指导细胞去游动。这个指南针的组成是四氧化三铁颗粒,是由细菌自己合成的,它是一个大小非常均一,一般在几纳米到十几纳米之间的一个纳米物质。迄今为止,我们人类最精细的制造技术也没有办法造出形状这么规则、大小均一的纳米物质,如果我们在纳米上想用这个东西,只能在细菌上拿到。 最后给大家举的例子可能有些朋友已经非常了解了,就是固氮。豆科植物的根部可以跟一些细菌共生,细菌把大气里面的氮气变成氨,作为营养物质供给植物。植物反馈给一些营养物质,两拨生物相互之间共生,还有一些细菌不需要豆科植物自己就能固氮。可以想像,如果我们要是能够把这些固氮功能转移到水稻或者小麦身上,那么我们的粮食生产第一可以摆脱化肥了,第二我们也可以避免化工厂带来的很多污染。 刚才给大家举的是一些很有趣的生物功能,但是大家心里面肯定有一个问题,这些生物功能到底能不能够应用于我们真正的生活中?我想告诉大家的是,其实我们是有一定的技术基础的,这里给大家展示几个例子,就是展现我们技术基础的例子。 第一个就是氨基酸。我们日常使用的味精是一种氨基酸,还有很多其他药品和食物里面都需要添加各种各样的氨基酸。构成细胞的21种氨基酸里面,有20种目前为止都是由图中这三种微生物来合成的。还有一种当然是化工合成,但是也是可以用生物做到的,只是成本有点贵,理论上来说21种都可以用生物来做。 还有就是我们现在吃的药,这些药物里面有1/3都是由细菌或者真菌这种微生物来合成。这是立普妥,年龄大一点的同志会比较了解,因为它是治疗心血管疾病的特效药,是由土曲霉合成的。 大学生朋友就更了解了,这是点外卖的时候会配送一些很脆的、稍微使点劲就容易断的刀和叉。这些刀叉也是微生物合成的,大家可能会觉得很神奇,这是怎么做的呢?玉米淀粉被微生物变成了乳酸,再经过适当的化工聚合,最终把它变成了我们想要的这种塑料,现在外卖里大量的刀叉都是拿微生物来制造的。 除了刚才给大家举的例子,还有一些例子可能大家更熟悉了,啤酒、酸奶、抗生素、胰岛素。这里面可能有两个例子大家比较震撼,一个是玻尿酸,女孩子们美容用的玻尿酸其实也是微生物合成的。还有一个是椰果,大家点的奶茶里的椰果其实不是从椰子刮下来的,是微生物木醋杆菌合成的。 所以如果把细胞看成工厂的话,其实它完美地契合我们对于工厂的定义,它是把原料变成我们想要的产品。除了这一点它还有自己的特性,第一,因为生物自己的生长和合成是不需要人管的,它是无人值守、全自动化的工厂;第二,因为生物是可以自我修复的,所以当它遇到不好的环境,受到不好的处理之后还可以自我修复;第三点是工厂能自我复制,每30分钟就能复制自己一次。 当然这个有好有坏,好的话复制这个工厂很便宜,不好就是知识产权保护不好的话,别人复制你的工厂也很容易。所以这是一个现在生物技术产业界大家面临的问题;第四点是它尺寸很小,所以可以把它局限在一个反应器里面,这样所有的废水、废气、废物都可以收集起来得到有效控制。 跟大家讲了我们现在关于细胞工厂的技术基础,我一开始举的几个例子能不能得到很好的应用呢?其实还是有点欠缺,原因在于这四种生物功能背后所涉及的通常都是几十到上百个基因之间的相互作用,而我刚才给大家举的几个是现在已经在我们生活中得到很好应用的案例,其实通常只涉及一到几个基因。 大家可以想一下,如果是你带着几十个甚至上百个人来干活,你还需要一个很复杂的协调和组织呢,更何况在细胞里面几十上百个基因一起合作,这背后需要写的程序是非常复杂的。 给大家举一个更形象的例子,左边这样图片是大肠杆菌,它在我们生活中无处不在。这个细菌可以看作是一个直径0.5微米、长度2微米的圆柱体。在这么小的空间内,它有400万的碱基对,更重要的是它有4400个基因在同时表达着,而且同时在发生不少于3000个化学反应。如果我们把这4400个基因中每个基因看做一个点,基因与基因之间如果相互作用就连成一条线,那就是右边的图。可以看到即便在这么小的空间,这么简单的一个生物,它内部的相互作用也是非常复杂的。 就是因为这种生物系统的复杂性,就带来了一个非常棘手的问题。可能学电子工程或者计算机的同学会知道,电子工程里面有一个定律叫做“摩尔定律(Moore's Law)”。什么叫“摩尔定律”?大概意思是说CPU的计算能力每隔一段时间,通常是18个月就会翻一倍,或者是芯片价格就降一倍,总的来说每18个月就厉害一倍。但是生物不是这样,举个例子,咱们生物医药呈现出“反摩尔定律(Eroom’s Law)”。就是说同样十亿美元,在1950年的时候十亿美元能开发出十几个新药,到2010年连一种都开发不出来,所以英文“摩尔”也是反过来写的。 这就揭示我们技术现在遇到问题和瓶颈了,我们投入相同的资源得到的产出越来越少,所以我们必须要换技术路线了,要进行一种技术革新。根据我们以往解决复杂问题的经验,我们有没有可以借鉴的呢?其实是有,在座的每位都有手机,手机里一张芯片有上亿个“逻辑门”,处理的功能这么复杂,我们是怎么样应对这种复杂度的呢? 👇🏽歡迎嘗試我頻道裡的其他影片👇🏽 通信: • 通信 人工智能: • AI·人工智能 航天: • 航天 宇宙: • 宇宙 教育: • 教育 少年中国: • 少年中国 植物: • 中国科学院植物研究所 生物: • 生物 心理: • 心理 医学: • 医学 生态: • 医学 环境: • 环境 药学: • 药学 数学: • 数学 物理: • 物理 化学: • 化学 艺术: • 艺术 摄影: • 摄影 传媒: • 传媒 考古: • 考古 恐龙: • 恐龙 诺贝尔奖: • 诺贝尔奖 工程: • 工程 #中科院 #格致论道 #科学 #科普 #知识 #知识科普 #格致論道 #科學 #知識 #知識科普 #教育