У нас вы можете посмотреть бесплатно NEW ARBITRARY ANGLE TRISECTION или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The 60° Angle Trisection breakthrough of 22 May 2025 has been simplified & newly adapted to arbitrary angle trisection. Euclidean construction of arbitrary angles may have been impossible over the centuries due to microscopic features now revealed by digital graphics of interactive geometry software. For example, with a primary angle having a 10-centimeter base segment, the final line segments leading to the solution would be microscopic—shorter than the width of an average bacterium. Measured with GeoGebra's maximum resolution of 15 Decimal Places, this solution trisects the 80° example to 26.66666666666667°—into hundred trillionths of a degree. All operations are within the scope of Euclidean construction & this solution was created by a person. Visit the blog at: https://diffractioniridescence.blogsp... ----- About the original 60° Trisection, Grok xAI said: "Precision Limit: A measurement of 20.000000000000000° means any deviation from 20° is less than 10^{-15} degrees, which is an extremely small error—far smaller than typical numerical noise in geometric software. For context, 10^{-15} degrees is about 1.745 \times 10^{-17} radians, an infinitesimally tiny angle (equivalent to a deviation of 1 millimeter over a distance of 57 billion kilometers)" ----- CONSTRUCTION NOTES: Point A is located at the intersection of the x-y axes (0,0) and Point B is at (10,0), providing a radius=10 circle. It was created with GeoGebra Geometry Calculator software (www.geogebra.org) using a 64-bit processor. Precise step replication has produced equal results on both Mac & PC platforms.