У нас вы можете посмотреть бесплатно Supercharge Your RAG with Contextualized Late Interactions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds. This can be used as a potential alternative to Dense Embeddings in Retrieval Augmented Generation. In this video we explore using ColBERTv2 with RAGatouille and compare it with OpenAI Embedding models. 🦾 Discord: / discord ☕ Buy me a Coffee: https://ko-fi.com/promptengineering |🔴 Patreon: / promptengineering 💼Consulting: https://calendly.com/engineerprompt/c... 📧 Business Contact: [email protected] Become Member: http://tinyurl.com/y5h28s6h 💻 Pre-configured localGPT VM: https://bit.ly/localGPT (use Code: PromptEngineering for 50% off). Signup for Advanced RAG: https://tally.so/r/3y9bb0 LINKS: Google Notebook: https://github.com/PromtEngineer/Yout... ColBERTv2 Paper: https://arxiv.org/pdf/2112.01488.pdf ColBERT Github: https://github.com/stanford-futuredat... RAGatouille: https://github.com/bclavie/RAGatouill... TIMESTAMPS: [00:00] Problem with Dense Embeddings in RAG [01:52] Colbert v2 for Efficient Retrieval [04:55] RAGatouille to the rescue [05:32] Semantic Search in Action: A Practical Example with ColBERTv2 [09:33] Comparing Retrieval Performance: Colbert vs. Dense Embedding Models [12:54] Enhancing Retrieval with Increased Chunk Size All Interesting Videos: Everything LangChain: • LangChain Everything LLM: • Large Language Models Everything Midjourney: • MidJourney Tutorials AI Image Generation: • AI Image Generation Tutorials