Π£ Π½Π°Ρ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Every Logic Paradox Created by Mathematicians Explained ΠΈΠ»ΠΈ ΡΠΊΠ°ΡΠ°ΡΡ Π² ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅, Π²ΠΈΠ΄Π΅ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ Π·Π°Π³ΡΡΠΆΠ΅Π½ΠΎ Π½Π° ΡΡΡΠ±. ΠΠ»Ρ Π·Π°Π³ΡΡΠ·ΠΊΠΈ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π²Π°ΡΠΈΠ°Π½Ρ ΠΈΠ· ΡΠΎΡΠΌΡ Π½ΠΈΠΆΠ΅:
ΠΡΠ»ΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅
Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈΡΡ
ΠΠΠΠΠΠ’Π ΠΠΠΠ‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ
ΠΡΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΈΠ΄Π΅ΠΎ, ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ° Π½Π°ΠΏΠΈΡΠΈΡΠ΅ Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΏΠΎ Π°Π΄ΡΠ΅ΡΡ Π²Π½ΠΈΠ·Ρ
ΡΡΡΠ°Π½ΠΈΡΡ.
Π‘ΠΏΠ°ΡΠΈΠ±ΠΎ Π·Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ²ΠΈΡΠ° ClipSaver.ru
Thanks for watching! Full paradox playlist: Β Β Β β’Β ParadoxesΒ Β Timestamps: 0:00 The Ring of Gyges (Plato) 1:44 The Heinz Dilemma (Lawrence Kohlberg) 3:24 The Paradox of the Ravens (Carl Hempel) 5:50 The Liar Paradox (Epimenides. Inspired Kurt GΓΆdelβs incompleteness theorems) 7:01 The Barber Paradox (Bertrand Russel) Further explanation of each chapter: 1. The Ring of Gyges - Deals with The implications on morality of unaccountable power. 2. The Heinz Dilemma - Game theory, decision theory, utility maximization models. 3. The Paradox of the Ravens - Logic, probability, and statistics. "All ravens are blackβ can be written formally as: βx(R(x)βB(x)) Its contrapositive: βx(Β¬B(x)βΒ¬R(x)) 4. The Liar Paradox - GΓΆdelβs Incompleteness Theorems proved that some true statements cannot be proven within consistent formal systems. 5. The Barber Paradox - Created by Betrend Russel, the Barber Paradox is a simplified illustration of Russellβs Paradox in set theory. See: Β Β Β β’Β EveryΒ WeirdΒ ParadoxΒ inΒ SetΒ TheoryΒ Β References: GΓΆdelβs Incompleteness Theorems https://plato.stanford.edu/entries/go... Bertrand Russel and Self-Reference Paradoxes https://plato.stanford.edu/entries/se... β DISCLAIMER β This video is intended for entertainment and educational purposes only. It should not be your sole source of information. Some details may be oversimplified or inaccurate. My goal is to spark your curiosity and encourage you to conduct your own research on these topics.