У нас вы можете посмотреть бесплатно Introduction to LLM Finetuning | Python Coding with hands-on-example или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this lecture, we learn about the introduction to LLM finetuning. We understand 2 types of finetuning: instruction based finetuning and classification finetuning. We then get started with the hands on implementation of classification finetuning. We download and preprocess the email classification dataset. The key reference book which this video series very closely follows is Build a Large Language Model from Scratch by Manning Publications. All schematics and their descriptions are borrowed from this incredible book! This book serves as a comprehensive guide to understanding and building large language models, covering key concepts, techniques, and implementations. Affiliate links for purchasing the book will be added soon. Stay tuned for updates! 0:00 Recap 01:39 What is finetuning? 4:46 Finetuning practical example 7:41 Instruction and classification finetuning 14:20 Hands on project: email classification finetuning 15:55 Coding: downloading the email classification dataset 19:09 Coding: Balancing the dataset 21:36 Training, validation and testing dataset splits 25:54 Summary and next steps Link to code file: https://drive.google.com/file/d/1XcmK... Pandas library to_csv function: https://pandas.pydata.org/docs/refere... ================================================= ✉️ Join our FREE Newsletter: https://vizuara.ai/our-newsletter/ ================================================= Vizuara philosophy: As we learn AI/ML/DL the material, we will share thoughts on what is actually useful in industry and what has become irrelevant. We will also share a lot of information on which subject contains open areas of research. Interested students can also start their research journey there. Students who are confused or stuck in their ML journey, maybe courses and offline videos are not inspiring enough. What might inspire you is if you see someone else learning and implementing machine learning from scratch. No cost. No hidden charges. Pure old school teaching and learning. ================================================= 🌟 Meet Our Team: 🌟 🎓 Dr. Raj Dandekar (MIT PhD, IIT Madras department topper) 🔗 LinkedIn: / raj-abhijit-dandekar-67a33118a 🎓 Dr. Rajat Dandekar (Purdue PhD, IIT Madras department gold medalist) 🔗 LinkedIn: / rajat-dandekar-901324b1 🎓 Dr. Sreedath Panat (MIT PhD, IIT Madras department gold medalist) 🔗 LinkedIn: / sreedath-panat-8a03b69a 🎓 Sahil Pocker (Machine Learning Engineer at Vizuara) 🔗 LinkedIn: / sahil-p-a7a30a8b 🎓 Abhijeet Singh (Software Developer at Vizuara, GSOC 24, SOB 23) 🔗 LinkedIn: / abhijeet-singh-9a1881192 🎓 Sourav Jana (Software Developer at Vizuara) 🔗 LinkedIn: / souravjana131