• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

The Verhoeff-Gumm Check Digit Algorithm скачать в хорошем качестве

The Verhoeff-Gumm Check Digit Algorithm 1 year ago

check digit

animation

manim

dihedral group

cayley table

pentagons

d5

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The Verhoeff-Gumm Check Digit Algorithm
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: The Verhoeff-Gumm Check Digit Algorithm в качестве 4k

У нас вы можете посмотреть бесплатно The Verhoeff-Gumm Check Digit Algorithm или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон The Verhoeff-Gumm Check Digit Algorithm в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



The Verhoeff-Gumm Check Digit Algorithm

Rediscover and explore the Verhoeff-Gumm algorithm, a check digit formula which is more resilient to common errors than the Luhn algorithm, which is widely used in credit card numbers, IMEI numbers and more. Historical Notes: "Error Detecting Decimal Codes" [1], a PhD thesis by J Verhoeff was published in 1969. It showed how the vast majority of digit typos were single digit or transposition errors, traditional "modulo 10" algorithms always missed some transposition errors, and introduced a novel class of algorithms based on "the dihedral group of order 10" (pentagon flips and rotations). In section 4.4, Verhoeff outlines using "search program" to find a permutation function that is optimal for detecting errors. A formal proof of the permutation's correctness is omitted. I found Verhoeff's writing to be difficult to approach, so I recommend a section in "Contemporary Abstract Algebra" (seventh edition) by Joseph A Gallian (pg 111-114) for a clearer write-up. A witty quote from Verhoeff in the introduction made me chuckle: "[I believe] that the codes explained in chapter 4 provide the first practical application of the dihedral group. This would illustrate the old saying that all beautiful mathematics will find an application, sooner or later." In 1985, H. Peter Gumm published "A new class of check-digit methods for arbitrary number systems" [2]. It starts with a dense proof that "modulo 10" (indeed modulo 2k) formulas will always be flawed. The paper then justifies the use of the dihedral group, which to me sounded like a mathematician walking around a store looking for the right outfit ("needs cancellation", "should be associative", "finite members", "can generalize for any even number"). Gumm then proves an algorithm using D_s works, using the number pair notation and a permutation function tau. Gumm claims to have been unaware of Verhoeff's work. Additionally, Gumm adds a proof and a way to scale it beyond 10 digits, so I decided to credit them both with discovering the algorithm in this video. A variant of the algorithm saw use (an may still see use) on German Banknotes [4]. Felix Klein (same as the Klein bottle) was an important contributor to group theory [3], and was chosen to be the cardholder in the intro. Likewise, Évariste Galois coined the term "group" and was thus chosen to be the online vendor. [1] https://ir.cwi.nl/pub/13046/13046D.pdf [2] https://www.researchgate.net/publicat... [3] https://archive.org/details/vergleich... [4] http://ocs.ef.jcu.cz/index.php/inprof... Expanding the Mathematical Toolbox: A key concept in Group Theory is the idea of sets, which is covered very well in [4]. Groups are introduced well in [5] and I hope the author continues the series. The Rubix cube can be analyzed using group theory [6] or with "graphs" [7], which are both useful when dealing with so many possible states. [4]    • What IS a Number? As Explained by a M...   "What IS a Number? As Explained by a Mathematician" by Another Roof [5]    • What is Group Theory? — Group Theory ...   "Researchers Use Group Theory to Speed Up Algorithms — Introduction to Groups" by Nemean [6]    • Group theory 101: How to play a Rubik...   "Group theory 101: How to play a Rubik’s Cube like a piano - Michael Staff" by TED-Ed [7]    • The trick that solves Rubik’s Cubes a...   "The algorithmic trick that solves Rubik’s Cubes and breaks ciphers" by polylog Animations were made by Kaylee L with Manim Community edition (https://www.manim.community/) taking about 7k lines of Python code to make. Narration by James K. Sound effects from YouTube Audio Library Battle Crowd Celebrate Stutter Punchline Drum This was an entry into Summer of Math Exposition 3 #SoME3 https://some.3b1b.co/ 0:00 Luhn Algorithm (and its flaw) 1:39 How could we fix the flaw? 2:21 Basic Integer Operations (how they don't help) 3:12 Rotating and Flipping Shapes is order dependent 4:16 Combining Pentagons (function composition) 5:30 "Packing the box" with pentagons (associativity/inverses) 6:56 Do our pentagons work for all transpositions? (Cayley Table) 8:29 Adding a preprocessing step (sigma function) 9:30 How to prove if sigma works (converting to integer pairs) 11:56 Proving Gumm's sigma function does work 13:12 Expanding sigma into digit permutation 13:38 Scaling up to 3 or more digits/pentagons 15:06 Summarizing the Verhoeff-Gumm Algorithm (and the variants) 16:00 Group theory is all about surprising symmetries

Comments
  • ПОРТНИКОВ: 7 hours ago
    ПОРТНИКОВ: "Вот что произойдет в ближайшее время". Что будет на переговорах, как поступит Зеленский
    Опубликовано: 7 hours ago
    336623
  • How subtraction makes the universe more robust | #SoME3 1 year ago
    How subtraction makes the universe more robust | #SoME3
    Опубликовано: 1 year ago
    27243
  • Group theory, abstraction, and the 196,883-dimensional monster 4 years ago
    Group theory, abstraction, and the 196,883-dimensional monster
    Опубликовано: 4 years ago
    3284761
  • Snowy Mountain Peaceful Classical Piano Stream – Live for Relaxation, Winter Calm  Sleep Relax Music
    Snowy Mountain Peaceful Classical Piano Stream – Live for Relaxation, Winter Calm Sleep Relax Music
    Опубликовано:
    0
  • What Happens If We Add Fractions Incorrectly? #SoME3 1 year ago
    What Happens If We Add Fractions Incorrectly? #SoME3
    Опубликовано: 1 year ago
    357161
  • Animated Python: 2D Lists and Connect Four 2 years ago
    Animated Python: 2D Lists and Connect Four
    Опубликовано: 2 years ago
    2408
  • Deep & Melodic House 24/7: Relaxing Music • Chill Study Music
    Deep & Melodic House 24/7: Relaxing Music • Chill Study Music
    Опубликовано:
    0
  • Something Strange Happens When You Keep Squaring 1 year ago
    Something Strange Happens When You Keep Squaring
    Опубликовано: 1 year ago
    8854390
  • But what are Hamming codes? The origin of error correction 4 years ago
    But what are Hamming codes? The origin of error correction
    Опубликовано: 4 years ago
    2614903
  • A problem so hard even Google relies on Random Chance 1 year ago
    A problem so hard even Google relies on Random Chance
    Опубликовано: 1 year ago
    1323902

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS