У нас вы можете посмотреть бесплатно Find the Area of a segment of a circle | Polar Coordinates & Double Integrals Explained или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Want to find the area of a circle segment? This video breaks down a step-by-step approach to solve this geometric challenge! We'll tackle the problem of finding the area of a circle segment defined by: Circle: x²+y²=4 Horizontal Line: y=1 Here's what we'll cover: Converting to Polar Coordinates: We'll transform the Cartesian equations into polar coordinates (using rcosθ for x and rsinθ for y). This simplifies the problem significantly. Visualizing the Region of Integration: We'll explore the region of interest, understanding how the radial distance 'r' changes as we rotate through the angle 'θ'. You'll see how the area is one distinct sector. Finding Intersection Angles: We'll calculate the precise angles where the circle intersects with the horizontal line by equating their polar equations. This is crucial for setting our integration limits. Setting Up the Double Integral: We'll demonstrate how to set up the double integral, incorporating the calculated intersection angles as the limits for 'θ'. Understanding Radial Integration: We'll visually explain the inner integral, showing how we integrate along the radial distance 'r' and how to determine the correct limits for each sector. Verification: We verify our result using the standard equation for the circle sector area, and then subtract the area of the triangular section to find the circle segment area. This provides a valuable check of our double integral solution. Evaluating the Integrals: Finally, we'll walk through the step-by-step evaluation of both the inner and outer integrals, leading to the final solution for the area. Whether you're a student, a math enthusiast, or just curious, this video provides a clear and detailed explanation of how to solve this fascinating geometric problem. Don't forget to like, comment, and subscribe for more math tutorials! #geometry #calculus #integration #polarcoordinates #math #mathematics #circles #areacalculation #doubleintegrals #Circlesegments