У нас вы можете посмотреть бесплатно YouTube Vibes – Real-Time YouTube Sentiment Analysis with API Integration using AI and ML | CB1306 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Online video platforms generate extensive volumes of user-generated comments that reflect audience perception, brand sentiment, and content engagement. However, the scale and unstructured nature of comment streams make manual analysis impractical. While deep learning approaches such as Long Short-Term Memory networks have been widely applied for sentiment classification, these models often require substantial computational resources and large training datasets, limiting their efficiency in real-time and resource-constrained environments. This project introduces the Real-Time API-Integrated Sentiment Evaluation Framework (RAISEF), developed as a full-stack web application using Python and the Django framework in accordance with IEEE academic standards. The system integrates the YouTube Data API to retrieve live comment streams associated with selected videos and processes them through a multi-model machine learning pipeline. RAISEF employs lightweight supervised algorithms optimized for efficient sentiment classification into positive, negative, and neutral categories. The framework supports instant comment analysis and visualized analytics through interactive dashboards, enabling trend monitoring and sentiment distribution reporting. Real-time processing facilitates immediate evaluation of new uploads without requiring extensive retraining cycles. The architecture supports applications such as brand reputation monitoring, audience feedback assessment, crisis detection, and review summarization. Designed strictly for academic and research purposes, this project demonstrates applied natural language processing, API integration, multi-model evaluation, and full-stack web deployment for scalable real-time sentiment analytics systems. TAGS: ieeeprojects, pythonprojects, djangoprojects, pythonwebapplications, pythonfullstackprojects, computerscienceprojects, computersciencefinalyearprojects, cseprojects, itprojects, finalyearprojects, finalsemprojects, finalyearstudentsprojects, btechprojects, beprojects, mtechprojects, meprojects, mcaprojects, mscprojects, majorprojects, miniprojects, liveprojects, researchorientedprojects CATEGORY: Education AUDIENCE: B.E, B.Tech, MCA, MSc, M.E, M.Tech, BCA and BSc – Universities in India & Abroad AVAILABLE PROJECTS DATA DOWNLOADS: https://stiny.in/CODEBK CONTACT & PRICING SECTION: Website: https://codebook.in Email: projects@codebook.in Phone / WhatsApp: +91 8555887986 WhatsApp (Direct Chat): https://wa.me/918555887986 Company Profile: https://g.co/kgs/RRXbkEr For pricing and documentation details, please share your academic requirements via WhatsApp or email. DISCLAIMER: This project is developed strictly for academic and research purposes following IEEE guidelines.