У нас вы можете посмотреть бесплатно Training AI on a Gaming PC или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The "VRAM Drought" is over. In this 2026 guide, we break down the best graphics cards for local AI development that won't break the bank. Whether you are fine-tuning SLMs, running local RAG pipelines, or experimenting with Agentic AI, your GPU choice in 2026 is about more than just CUDA cores—it's about FP4 throughput and Memory Bus width. We analyze the three major winners in the current market: The Performance King: NVIDIA RTX 5070 Ti ($749). With 16GB of GDDR7 and the new Blackwell architecture, this card delivers over 1,400 AI TOPS. It’s the gold standard for those who need the reliability of the CUDA/TensorRT ecosystem. The VRAM Disruptor: Intel Arc Pro B70 ($799 - $899). The shock of 2026! Intel's new workstation-focused Battlemage card offers a massive 32GB of VRAM. If you are running high-parameter local LLMs and don't want to shard across multiple cards, this is the most cost-effective "Brain" on the market. The Value Champion: AMD Radeon RX 9070 XT ($749). Thanks to ROCm 7.2, AMD is finally a viable contender. With 16GB of VRAM and massive raw compute, it’s the best "Open Source" choice for developers who prefer the Linux-first AI stack. We also touch on the "Budget Secret" of 2026: The RTX 5060 Ti 16GB, which remains the cheapest way to get into a 16GB VRAM buffer for under $450. Build your 2026 AI workstation with our vetted hardware list: 👉 https://kaizenapps.com