У нас вы можете посмотреть бесплатно LangChain vs LangGraph: The Ultimate Guide to Building AI Agents | или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🚀 Welcome back to The Data Key! We are moving beyond single LLMs. The future of AI is Multi-Agent Systems—teams of specialized AI agents working together to solve complex problems. But how do you build them? In this video, we break down the two most powerful frameworks for building AI agents: LangChain and LangGraph. We explain the critical difference between the "Car" (LangChain) and the "Engine" (LangGraph) and dive into the three main collaboration models: The Supervisor, The Swarm, and The Hierarchy. If you are a developer confused about when to use LangChain agents vs. LangGraph state machines, this video gives you the definitive answer. ---------------------------------------------------------------------------------- 👇 In this video, we cover: 🔹️ The Problem: Why single LLMs fail at complex tasks. 🔹️ The 3 Agent Architectures: ● The Supervisor: Top-down project management. ● The Swarm: Decentralized, shared-workspace collaboration. ● The Hierarchy: Enterprise-grade "teams of teams." 🔹️ The Framework Battle: Why LangChain is for speed 🏎️ and LangGraph is for control ⚙️. 🔹️ Real-World Example: Building a Chemistry 🔹️ Research Team (Generalist + Expert + Translator). 🔹️ When to Use Which: A clear checklist for your next project. ---------------------------------------------------------------------------------- 📚 Important Resources & Documentation Here are the official docs and guides for the tools mentioned in this video: 🔺️ LangChain Documentation (The "Car"): ● https://python.langchain.com/docs/get... ● https://python.langchain.com/docs/mod... LangChain Agents Concepts 🔺️ LangGraph Documentation (The "Engine"): ● https://docs.langchain.com/oss/python... ● https://langchain-ai.github.io/langgr... 📝 Deep Dives & Blogs: ● LangChain Blog on Multi-Agent Collaboration : https://blog.langchain.dev/langgraph-... ● Understanding "The Swarm" Architecture (Reference for swarm concepts) : https://github.com/openai/swarm ---------------------------------------------------------------------------------- ⏳ Timestamps 00:00 - Intro: Why We Need Teams of AI Agents 00:39 - The 3 Ways Agents Collaborate 00:53 - Model 1: The Supervisor (Top-Down Control) 01:24 - Model 2: The Swarm (Shared Workspace) 01:55 - Model 3: The Hierarchy (Enterprise Scale) 02:34 - Practical Example: The Chemistry Research Team 04:06 - LangChain vs. LangGraph: The Car vs. The Engine 06:00 - How to Choose: Speed vs. Control? 07:02 - Conclusion: Mastering the New Era of AI ---------------------------------------------------------------------------------- #langchain #langgraph #aiagents #agenticai #datascience #machinelearningfullcourse #machinelearning #datasciencecourse #newvideo #youtubevideo #scienceandtechnology #aicontent #aiconcept #aigenerated #aitechnology #tech #newconcepts #trendingvideo #viralvideo #linkedin #informationtechnology #dataanalytics #subscribe #pythoncoding #ai #programming #pythontutorial #thedatakey #datasciencebasics #newcreator #youtubecreator #chatgpt #google #googlegemini #newchannel