У нас вы можете посмотреть бесплатно Beyond Ideation: Can LLMs Conduct Automated AI Research? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to SciPulse. In this episode, we explore a groundbreaking shift in artificial intelligence: moving from models that simply brainstorm ideas to systems that can execute, test, and learn from their own scientific experiments. Current Large Language Models (LLMs) are often capable of generating research ideas that look plausible on the surface but prove ineffective when actually implemented. To bridge this "ideation-execution gap", researchers at Stanford University have developed an Automated Idea Executor designed to ground AI research in real-world performance. In this video, we discuss: • The Automated Research Pipeline: How a system of Implementers, Schedulers, and Workers turns natural language ideas into executable code and parallel GPU experiments. • Realistic Research Environments: The use of GPU-intensive tasks, such as optimising nanoGPT pre-training and improving GRPO post-training, to benchmark AI capabilities. • Evolutionary Search vs. Reinforcement Learning: Why execution-guided evolutionary search succeeded in finding recipes that outperformed human experts, while standard Reinforcement Learning (RL) struggled with "diversity collapse". • The Future of Discovery: How frontier models like Claude-4.5-Opus have demonstrated the ability to rediscover cutting-edge research concepts published only months prior. • Key Limitations: An analysis of why RL models tend to converge on simple, "safe" ideas and experience a shrinking of "thinking lengths" during the learning process. This research paves the foundation for execution-grounded automated AI research, offering a path toward models that can scalably convert compute into genuine scientific discovery. Educational Disclaimer: This video is intended for educational purposes and provides a synthesis of research findings. It does not replace the original scientific paper, which contains complete methodologies and data analysis. Original Paper Link: https://arxiv.org/pdf/2601.14525 #AI #ArtificialIntelligence #MachineLearning #LLM #Research #ScientificDiscovery #AutoML #SciPulse #AIResearch #LargeLanguageModels #Claude4 #DeepLearning #NeuralNetworks #ReinforcementLearning #EvolutionarySearch