• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Mathematics of LLMs in Everyday Language скачать в хорошем качестве

Mathematics of LLMs in Everyday Language 4 месяца назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Mathematics of LLMs in Everyday Language
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Mathematics of LLMs in Everyday Language в качестве 4k

У нас вы можете посмотреть бесплатно Mathematics of LLMs in Everyday Language или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Mathematics of LLMs in Everyday Language в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Mathematics of LLMs in Everyday Language

Explore science like never before - accessible, thrilling, and packed with awe-inspiring moments. Fuel your curiosity with 100s of free, curated STEM audio shows . Download The Turing App on the Apple App Store, Google Play Store or listen at https://theturingapp.com/ Foundations of Thought: Inside the Mathematics of Large Language Models ⏱️Timestamps⏱️ 00:00 Start 03:11 Claude Shannon and Information theory 03:59 ELIZA and LLM Precursors (e.g., AutoComplete) 05:43 Probability and N-Grams 09:45 Tokenization 12:34 Embeddings 16:20 Transformers 20:21 Positional Encoding 22:36 Learning Through Error 26:29 Entropy - Balancing Randomness and Determinism 29:36 Scaling 32:45 Preventing Overfitting 36:24 Memory and Context Window 40:02 Multi-Modality 48:14 Fine Tuning 52:05 Reinforcement Learning 55:28 Meta-Learning and Few-Shot Capabilities 59:08 Interpretability and Explainability 1:02:14 Future of LLMs What if a machine could learn every word ever written—and then begin to predict, complete, and even create language that feels distinctly human? This is a cinematic deep dive into the mathematics, mechanics, and meaning behind today’s most powerful artificial intelligence systems: large language models (LLMs). From the origins of probability theory and early statistical models to the transformers that now power tools like ChatGPT and Claude, this documentary explores how machines have come to understand and generate language with astonishing fluency. This video unpacks how LLMs evolved from basic autocomplete functions to systems capable of writing essays, generating code, composing poetry, and holding coherent conversations. We begin with the foundational concepts of prediction and probability, tracing back to Claude Shannon’s information theory and the early era of n-gram models. These early techniques were limited by context—but they laid the groundwork for embedding words in mathematical space, giving rise to meaning in numbers. The transformer architecture changed everything. Introduced in 2017, it enabled models to analyze language in full context using self-attention and positional encoding, revolutionizing machine understanding of sequence and relationships. As these models scaled to billions and even trillions of parameters, they began to show emergent capabilities—skills not directly programmed but arising from the sheer scale of training. The video also covers critical innovations like gradient descent, backpropagation, and regularization techniques that allow these systems to learn efficiently. It explores how models balance creativity and coherence using entropy and temperature, and how memory and few-shot learning enable adaptability across tasks with minimal input. Beyond the algorithms, we examine how we align AI with human values through reinforcement learning from human feedback (RLHF), and the role of interpretability in building trust. Multimodality adds another layer, as models increasingly combine text, images, audio, and video into unified systems capable of reasoning across sensory inputs. With advancements in fine-tuning, transfer learning, and ethical safeguards, LLMs are evolving into flexible tools with the power to transform everything from medicine to education. If you’ve ever wondered how AI really works, or what it means for our future, this is your invitation to understand the systems already changing the world. #largelanguagemodels #tokenization #embeddings #TransformerArchitecture #AttentionMechanism #SelfAttention #PositionalEncoding #gradientdescent #explainableai

Comments
  • The Strange Math That Predicts (Almost) Anything 3 месяца назад
    The Strange Math That Predicts (Almost) Anything
    Опубликовано: 3 месяца назад
  • Visualizing transformers and attention | Talk for TNG Big Tech Day '24 11 месяцев назад
    Visualizing transformers and attention | Talk for TNG Big Tech Day '24
    Опубликовано: 11 месяцев назад
  • 599. AGI Hardware Requirements AI (AGIHR AI): A Multi Phase Roadmap & Timeline. 1 час назад
    599. AGI Hardware Requirements AI (AGIHR AI): A Multi Phase Roadmap & Timeline.
    Опубликовано: 1 час назад
  • 20 концепций искусственного интеллекта, объясненных за 40 минут 1 месяц назад
    20 концепций искусственного интеллекта, объясненных за 40 минут
    Опубликовано: 1 месяц назад
  • This Simple Optimizer Is Revolutionizing How We Train AI [Muon] 1 месяц назад
    This Simple Optimizer Is Revolutionizing How We Train AI [Muon]
    Опубликовано: 1 месяц назад
  • Stanford Webinar - Agentic AI: A Progression of Language Model Usage 9 месяцев назад
    Stanford Webinar - Agentic AI: A Progression of Language Model Usage
    Опубликовано: 9 месяцев назад
  • Mathematics: The rise of the machines - Yang-Hui He 1 месяц назад
    Mathematics: The rise of the machines - Yang-Hui He
    Опубликовано: 1 месяц назад
  • Цепи Маркова — математика предсказаний [Veritasium] 1 месяц назад
    Цепи Маркова — математика предсказаний [Veritasium]
    Опубликовано: 1 месяц назад
  • Lesson 3: Understanding Word Embeddings in AI and LLMs 1 год назад
    Lesson 3: Understanding Word Embeddings in AI and LLMs
    Опубликовано: 1 год назад
  • THIS is why large language models can understand the world 7 месяцев назад
    THIS is why large language models can understand the world
    Опубликовано: 7 месяцев назад
  • Richard Sutton – Father of RL thinks LLMs are a dead end 1 месяц назад
    Richard Sutton – Father of RL thinks LLMs are a dead end
    Опубликовано: 1 месяц назад
  • But what is quantum computing?  (Grover's Algorithm) 6 месяцев назад
    But what is quantum computing? (Grover's Algorithm)
    Опубликовано: 6 месяцев назад
  • The $200M Machine that Prints Microchips:  The EUV Photolithography System 2 месяца назад
    The $200M Machine that Prints Microchips: The EUV Photolithography System
    Опубликовано: 2 месяца назад
  • Самый важный алгоритм в машинном обучении 1 год назад
    Самый важный алгоритм в машинном обучении
    Опубликовано: 1 год назад
  • Don't learn AI Agents without Learning these Fundamentals 3 недели назад
    Don't learn AI Agents without Learning these Fundamentals
    Опубликовано: 3 недели назад
  • Large Language Models (LLMs) - Everything You NEED To Know 1 год назад
    Large Language Models (LLMs) - Everything You NEED To Know
    Опубликовано: 1 год назад
  • DeepSeek OCR — больше, чем просто OCR 3 недели назад
    DeepSeek OCR — больше, чем просто OCR
    Опубликовано: 3 недели назад
  • Complete Quantum Mechanics in Everyday Language 4 месяца назад
    Complete Quantum Mechanics in Everyday Language
    Опубликовано: 4 месяца назад
  • RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models 7 месяцев назад
    RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models
    Опубликовано: 7 месяцев назад
  • But how do AI images and videos actually work? | Guest video by Welch Labs 3 месяца назад
    But how do AI images and videos actually work? | Guest video by Welch Labs
    Опубликовано: 3 месяца назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5