У нас вы можете посмотреть бесплатно Gaussian Elimination | Linear Algebra #8 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
☕️ Buy me a coffee: https://paypal.me/donationlink240 🙏🏻 Support me on Patreon: / ahmadbazzi 📚About Gaussian elimination, a.k.a row-reduction, is a technique used to solve systems of linear equations. Given a system Ax = b, the coefficients of the matrix A along with vector b are stacked next to each other [ A | b ] to form the so-called Augmented matrix. Then, using an appropriate sequence of row-operations, we can reduce the augmented matrix to an upper-triangular one to solve in a backward manner. The lecture is outlined as follows: 00:00 What does Gaussian Elimination do ? 01:12 Upper Triangular Matrix 02:38 Why do we perform Gaussian Elimination ? 03:16 BackSolving: Solving by back-substitution 05:21 The Gaussian Elimination Procedure 09:06 Example on the Gaussian Elimination Procedure 13:40 Summary Lecture 1: Matrix Arithmetic • Matrix Arithmetic | Linear Algebra #1 Lecture 2: Linear Transformations • Linear Transformations | Linear Algebra #2 Lecture 3: Powers of Matrices with Application to Graph Theory • Powers of Matrices with Application to Gra... Lecture 4: Non-Singular Matrices and Linear Systems • Non-Singular Matrices and Linear Systems |... Lecture 5: Matrix Transpose and Symmetric Matrices • Matrix Transpose & Symmetric Matrices | Li... Lecture 6: Introduction to Linear Systems • Introduction to Linear Equations | Linear... Lecture 7: Solving Square Linear Systems • Solving Square Linear Systems | Linear Alg... / ahmadbazzi ●▬▬▬▬▬▬▬๑۩۩๑▬▬▬▬▬▬▬▬● _****╔═╦╗╔╦╗╔═╦═╦╦╦╦╗╔═╗**** _ _****║╚╣║║║╚╣╚╣╔╣╔╣║╚╣═╣**** _ _****╠╗║╚╝║║╠╗║╚╣║║║║║═╣**** _ _****╚═╩══╩═╩═╩═╩╝╚╩═╩═╝**** _ ●▬▬▬▬▬▬▬๑۩۩๑▬▬▬▬▬▬▬▬●