У нас вы можете посмотреть бесплатно AI Frontiers: Computer Vision Breakthroughs - December 28, 2025 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Explore groundbreaking computer vision research from December 28, 2025, featuring 113 papers that are reshaping how machines see and understand the world. This episode covers revolutionary advances including petascale remote sensing foundation models that challenge traditional scaling laws, breakthrough transparent object perception using repurposed video diffusion models, and real-time multimodal video generation enabling interactive AI avatars. Key highlights include synthetic CT generation from MRI achieving 99% structural similarity (eliminating radiation exposure for children), streaming video super-resolution with 130x latency reduction, and domain adaptation techniques spanning surgical environments to satellite imagery. We examine how Vision Transformers and diffusion models are evolving beyond their original designs, the emergence of multimodal fusion techniques, and the critical shift toward practical deployment considerations. The research reveals that specialized domains may follow different scaling laws than general applications, generative models have internalized sophisticated optical physics understanding, and the boundaries between perception and generation are dissolving. These advances point toward a future where AI systems don't just process visual data but truly understand and interact with the visual world in real-time. This synthesis was created using AI tools including GPT Anthropic's Claude Sonnet 4 model for content analysis, Google's text-to-speech synthesis for narration, and Stable Diffusion for visual generation, demonstrating the collaborative potential of modern AI systems in scientific communication. 1. Charith Wickrema et al. (2025). Scaling Remote Sensing Foundation Models: Data Domain Tradeoffs at the Peta-Scale. https://arxiv.org/pdf/2512.23903v1 2. Krithika Iyer et al. (2025). MRI-to-CT Synthesis With Cranial Suture Segmentations Using A Variational Autoencoder Framework. https://arxiv.org/pdf/2512.23894v1 3. Qucheng Peng et al. (2025). Lifelong Domain Adaptive 3D Human Pose Estimation. https://arxiv.org/pdf/2512.23860v1 4. Lvmin Zhang et al. (2025). Pretraining Frame Preservation in Autoregressive Video Memory Compression. https://arxiv.org/pdf/2512.23851v1 5. Surya Rayala et al. (2025). Video-Based Performance Evaluation for ECR Drills in Synthetic Training Environments. https://arxiv.org/pdf/2512.23819v1 6. Hau-Shiang Shiu et al. (2025). Stream-DiffVSR: Low-Latency Streamable Video Super-Resolution via Auto-Regressive Diffusion. https://arxiv.org/pdf/2512.23709v1 7. Shaocong Xu et al. (2025). Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation. https://arxiv.org/pdf/2512.23705v1 8. Kang Du et al. (2025). IDT: A Physically Grounded Transformer for Feed-Forward Multi-View Intrinsic Decomposition. https://arxiv.org/pdf/2512.23667v2 9. Keda Tao et al. (2025). OmniAgent: Audio-Guided Active Perception Agent for Omnimodal Audio-Video Understanding. https://arxiv.org/pdf/2512.23646v1 10. Xiaoyu Li et al. (2025). Rethinking the Spatio-Temporal Alignment of End-to-End 3D Perception. https://arxiv.org/pdf/2512.23635v1 11. Shu Pu et al. (2025). Memorization in 3D Shape Generation: An Empirical Study. https://arxiv.org/pdf/2512.23628v1 12. Ankan Aich et al. (2025). Leveraging Synthetic Priors for Monocular Depth Estimation in Specular Surgical Environments. https://arxiv.org/pdf/2512.23786v1 13. Janani Annur Thiruvengadam et al. (2025). Scalable Residual Feature Aggregation Framework with Hybrid Metaheuristic Optimization for Robust Early Pancreatic Neoplasm Detection in Multimodal CT Imaging. https://arxiv.org/pdf/2512.23597v1 14. Nguyen Truong Khai et al. (2025). Detection Fire in Camera RGB-NIR. https://arxiv.org/pdf/2512.23594v1 15. Damiano Marsili et al. (2025). Same or Not? Enhancing Visual Perception in Vision-Language Models. https://arxiv.org/pdf/2512.23592v1 16. Ethan Chern et al. (2025). LiveTalk: Real-Time Multimodal Interactive Video Diffusion via Improved On-Policy Distillation. https://arxiv.org/pdf/2512.23576v1 17. Shaohan Yu et al. (2025). ProGuard: Towards Proactive Multimodal Safeguard. https://arxiv.org/pdf/2512.23573v1 18. Zhaoming Kong et al. (2025). Image Denoising Using Global and Local Circulant Representation. https://arxiv.org/pdf/2512.23569v1 19. Siyu Jiao et al. (2025). ThinkGen: Generalized Thinking for Visual Generation. https://arxiv.org/pdf/2512.23568v1 20. Hanzheng Li et al. (2025). RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature. https://arxiv.org/pdf/2512.23565v2 Disclaimer: This video uses arXiv.org content under its API Terms of Use; AI Frontiers is not affiliated with or endorsed by arXiv.org.