У нас вы можете посмотреть бесплатно The MODERN Modern Data Stack: Building an Open Distributed Data Warehouse Beyond... David Aronchick или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Don't miss out! Join us at the next Open Source Summit in Hyderabad, India (August 5); Amsterdam, Netherland (August 25-29); Seoul, South Korea (November 4-5). Join us at the premier vendor-neutral open source conference, where developers and technologists come together to collaborate, share knowledge, and explore the latest innovations and advancements in open source technology. Learn more at https://events.linuxfoundation.org/ The MODERN Modern Data Stack: Building an Open Distributed Data Warehouse Beyond Data Lakes - David Aronchick, Expanso Organizations face a critical challenge: data is growing exponentially across distributed locations, but traditional centralized processing approaches are becoming unsustainable. With the majority of enterprise data going unused, companies struggle with massive transfer costs, compliance issues, and network reliability problems when moving data to centralized infrastructure. This talk introduces a paradigm shift: bringing compute to where data lives. Using the open-source Bacalhau project, we'll demonstrate how to: Deploy distributed processing jobs across clouds, edge devices, and on-premises infrastructure Reduce data movement costs while maintaining centralized control Ensure compliance by processing sensitive data in place Enable real-time analytics at the edge Through real-world examples, including an energy company managing 15,000 microgrids and cities processing camera feeds, attendees will learn practical patterns for modernizing their data infrastructure. We'll explore architectural patterns, security considerations, and best practices for implementing compute-over-data architectures.