У нас вы можете посмотреть бесплатно Why Vector Databases Matter (More Than Your LLM) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
While the conversation around AI often focuses on Large Language Models (LLMs) and agents, a critical component is often overlooked: the ability to retrieve specific knowledge quickly and accurately. This video explores why vector databases are the essential backbone for building reliable, production-ready AI applications. LLMs are excellent at generating text, but they cannot effectively use your proprietary knowledge—stored in unstructured data like PDFs, support logs, and meeting notes—without the right context. Traditional keyword search frequently fails because it relies on exact word matches, missing the intent when a user asks about a "refund policy" while the document uses the term "cancellation". In this video, you will learn: • The Unstructured Data Challenge: Why high-value information trapped in emails, diagrams, and videos is difficult for traditional systems to process. • Meaning over Keywords: How semantic similarity allows systems to understand user intent rather than just matching text. • The Vector Workflow: A step-by-step look at converting content into embeddings (numerical representations of meaning) and storing them for instant retrieval. • Production Power: How vector databases enable Retrieval-Augmented Generation (RAG), providing grounded answers instead of AI guesswork. To build a scalable and accurate AI application, moving beyond keyword search to semantic search is a non-negotiable step for modern developers. #AI #LLM #vectordatabase #keywordsearch #semanticsearch #RAG #vectordatabases #embeddings #aiinfrastructure Timestamps: 0:00 - The Missing Piece of the AI Puzzle 1:15 - Why Your LLM Can’t Find Your Data 2:45 - The Failure of Keyword Search 4:10 - How Vector Databases Work: From Embeddings to Search 6:30 - RAG and Semantic Search in Production 8:15 - Scaling Your AI Infrastructure