У нас вы можете посмотреть бесплатно Blood Cancer Detection using Deep Learning | Machine learning | Best IEEE Machine Learning Project или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
For Complete Code contact +918088605682 (includes watsapp)(100% guaranteed response) Title: Advanced Blood Cancer Detection using Deep Learning and CNN | 99.88% Accuracy | IEEE Based Deeplearning Project 2024 Description: Welcome to our comprehensive video on "Advanced Blood Cancer Detection using Deep Learning and CNN"! In this video, we walk you through our innovative approach to detecting leukemia, significantly improving upon existing methodologies in the field. In our research, we extended the existing two-class classification system to a more detailed four-class system. We have implemented extensive data augmentation techniques including rotation, translation, scaling, shearing, flipping, cropping, and padding to enhance the robustness of our model. Furthermore, we have applied a variety of image processing filters and enhancements: Noise Reduction: Gaussian Filter Median Filter Bilateral Filter Contrast Enhancement: Histogram Equalization Contrast Limited Adaptive Histogram Equalization (CLAHE) Adaptive Histogram Equalization Edge Detection: Sobel Filter Canny Edge Detector Laplacian of Gaussian (LoG) Image Smoothing and Sharpening: Average Filter (Box Filter) Unsharp Masking High-pass Filter Morphological Operations: Erosion and Dilation Opening and Closing Normalization: Intensity Normalization Z-score Normalization Other Filters: Wiener Filter Non-Local Means Filter We utilized advanced transfer learning models such as ResNet50, MobileNet, and VGG16, achieving remarkable accuracy rates of 99.88%, 98%, and 97%, respectively. These results far surpass the 95% accuracy reported in the existing literature. Additionally, we developed an intuitive frontend and backend using HTML, CSS, and Flask, making our system accessible and user-friendly. For those interested in our code or further details, please contact us at [Your Contact Number] or visit our website at [Your Website URL]. Join us in this video to learn more about our groundbreaking work in leukemia detection using state-of-the-art deep learning techniques. Don't forget to like, share, and subscribe for more insightful content! #LeukemiaDetection #DeepLearning #CNN #TransferLearning #ResNet50 #MobileNet #VGG16 #BloodCancerDetection #MedicalImaging #AIinHealthcare #DataAugmentation #ImageProcessing #MachineLearning For the code and further inquiries, contact us at: 📞 +918088605682 🌐 Visit our website: https://smartaitechnologies.com/