У нас вы можете посмотреть бесплатно MLOps with MLflow или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Today's Data Scientists (and budding ones too) build ML models with tons of tools and libraries at their disposal. Not many have exposure to MLOps. Wikipedia defines MLOps as "a set of practices that aims to deploy and maintain machine learning models in production reliably and efficiently." This tech talk is aimed at imparting that knowledge with MLfLow as a tool to manage ML pipelines and deploy ML models in production. MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. This will be a hands-on session that focuses on building, managing and deploying models using MLflow APIs and serve models as microservices. Any model building experience (even textbook exercises) is sufficient to follow the session. Speaker: Ramanathan R M, Sr. Architect (Data Science) @ SLK Software Code: https://github.com/RaamRaam/mlflow_we...