• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Dynamic Deep Learning | Richard Sutton скачать в хорошем качестве

Dynamic Deep Learning | Richard Sutton 6 months ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Dynamic Deep Learning | Richard Sutton
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Dynamic Deep Learning | Richard Sutton в качестве 4k

У нас вы можете посмотреть бесплатно Dynamic Deep Learning | Richard Sutton или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Dynamic Deep Learning | Richard Sutton в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Dynamic Deep Learning | Richard Sutton

ICARL Seminar Series - 2024 Winter Dynamic Deep Learning Seminar by Richard Sutton —————————————————— Abstract: Despite great successes, current deep learning methods cannot learn effectively during normal operation, which makes them ill-suited for reinforcement learning or, really, for any general intelligence. In particular, conventional artificial neural networks fail catastrophically in classic supervised learning testbeds, such as ImageNet, when those testbeds are extended to require ongoing learning. In this talk, I argue that this failure is not inherent in neural networks, but just of the algorithms currently used. For example, a simple modification of the standard backpropagation algorithm, known as continual backpropagation, greatly improves performance in continual learning settings. Such results suggest exploring network learning algorithms explicitly designed for continual and reversible change, such as Dynamic deep learning networks, which continually adapt at multiple levels including 1) their weights, 2) their step-size parameters, and 3) their interconnection structure. —————————————————— About the Speaker: Rich Sutton is research scientist at Keen Technologies, professor in the Department of Computing Science at the University of Alberta, chief scientific advisor of the Alberta Machine Intelligence Institute (Amii), and fellow of the Royal Society of London, the Royal Society of Canada, the Association for the Advancement of Artificial Intelligence, Amii, and CIFAR. He received a PhD in computer science from the University of Massachusetts in 1984 and a BA in psychology from Stanford University in 1978. Prior to joining the University of Alberta in 2003, he worked in industry at AT&T Labs and GTE Labs, and in academia at the University of Massachusetts. He helped found DeepMind Alberta in 2017 and worked there until its dissolution in 2023. At the University of Alberta, Sutton founded the Reinforcement Learning and Artificial Intelligence Lab, which now consists of ten principal investigators and about 100 people altogether. Sutton is co-author of the textbook Reinforcement Learning: An Introduction, and his scientific publications have been cited more than 140,000 times. He is also a libertarian, a chess player, and a cancer survivor. —————————————————— Links Richard Sutton Site: incompleteideas.net Twitter: x.com/RichardSSutton ICARL Site: icarl.doc.ic.ac.uk Twitter: x.com/ic_arl YouTube: @ICARLSeminars ——————————————————

Comments
  • Gradient descent, how neural networks learn | DL2 7 years ago
    Gradient descent, how neural networks learn | DL2
    Опубликовано: 7 years ago
    7777769
  • 432Hz- Fall Into Deep Healing Sleep, Regenerates Body and Mind, Emotional and Physical Healing
    432Hz- Fall Into Deep Healing Sleep, Regenerates Body and Mind, Emotional and Physical Healing
    Опубликовано:
    0
  • LLMs as Creativity Support Tool for Live Artistic Performance | Piotr Mirowski 7 months ago
    LLMs as Creativity Support Tool for Live Artistic Performance | Piotr Mirowski
    Опубликовано: 7 months ago
    170
  • TURING AWARD WINNER Richard S. Sutton in Conversation with Cam Linke | No Authorities in Science 2 months ago
    TURING AWARD WINNER Richard S. Sutton in Conversation with Cam Linke | No Authorities in Science
    Опубликовано: 2 months ago
    8822
  • Pete Shadbolt at MIT EmTech: Building the World’s First Useful Quantum Computer 5 months ago
    Pete Shadbolt at MIT EmTech: Building the World’s First Useful Quantum Computer
    Опубликовано: 5 months ago
    34290
  • GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem 8 months ago
    GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem
    Опубликовано: 8 months ago
    119615
  • The moment we stopped understanding AI [AlexNet] 10 months ago
    The moment we stopped understanding AI [AlexNet]
    Опубликовано: 10 months ago
    1928612
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19418939
  • Sequence-to-Sequence (seq2seq) Encoder-Decoder Neural Networks, Clearly Explained!!! 2 years ago
    Sequence-to-Sequence (seq2seq) Encoder-Decoder Neural Networks, Clearly Explained!!!
    Опубликовано: 2 years ago
    265380
  • L5 DDPG and SAC (Foundations of Deep RL Series) 3 years ago
    L5 DDPG and SAC (Foundations of Deep RL Series)
    Опубликовано: 3 years ago
    25924

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS