• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих. скачать в хорошем качестве

Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих.

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих.
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих. в качестве 4k

У нас вы можете посмотреть бесплатно Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих. или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих. в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Машинное обучение с нуля: Линейная регрессия на python. Data Science. Уроки для начинающих.

00:00:00 Введение в задачу • Описание задачи: написание алгоритма линейной регрессии с функцией потерь MSE. • Использование градиентного спуска для поиска весов. • Уточнение, что алгоритм пишется вручную, так как в библиотеке Scikit-learn используется функция потерь MSE. 00:01:53 Преимущества и недостатки функции потерь MSE • MSE менее чувствительна к выбросам, чем L1. • MSE не дифференцируема в нуле, что требует дополнительного определения функции. • Решение проблемы с помощью доопределения функции. 00:05:06 Подготовка данных • Копирование данных с десмоса и вставка в Python. • Создание датафрейма для хранения данных. • Подключение библиотек pandas и numpy для работы с таблицами и массивами. 00:08:06 Перезапись данных • Перезапись координат точек в датафрейм. • Создание словаря для хранения данных. • Проверка правильности записи координат. 00:12:54 Визуализация данных • Вывод данных в таблицу для проверки. • Визуализация данных с помощью matplotlib. • Создание графика с помощью метода plot. 00:14:34 Работа с графиком • График выглядит как закорючка, нужно убрать линию между точками. • Используем тип графика "скейтер" для отображения точек. • Точки совпадают с точками на графике в десмосе. 00:15:13 Определение начальных весов • Определяем начальные веса для линии. • Используем парное присвоение в Python для задания начальных весов. • Задаем коэффициенты и смещение для линии. 00:16:47 Создание колонки для прогнозируемого значения • Создаем колонку "прогнозируемое значение" в таблице. • Используем функцию "df" для создания колонки. • Записываем формулу для прогнозируемого значения. 00:17:34 Формула для прогнозируемого значения • Формула для прогнозируемого значения: "y" равно "x" плюс "b". • Убираем лишние детали из формулы. • Используем данные из датафрейма для расчета "x". 00:18:56 Доступ к данным датафрейма • Доступаемся к столбцу "x" в датафрейме. • Используем функцию "df" для доступа к данным. • Завершаем настройку формулы для прогнозируемого значения. 00:19:13 Работа с данными и прогнозами • Обсуждение необходимости использования квадратных скобок для обращения к данным. • Введение формулы для прогнозирования: y = w * x + b. • Сравнение прогнозируемых значений с целевыми данными y_target. 00:20:18 Проблемы с прогнозами • Прогнозы сильно отличаются от целевых значений. • Объяснение, почему веса w и b по умолчанию равны 1. • Необходимость смещения линии для улучшения соответствия. 00:21:23 Инициализация весов • Алгоритм линейной регрессии инициализирует веса случайным образом. • Создание таблицы и подготовка данных для визуализации. • Переход от Pandas к Matplotlib для визуализации. 00:22:19 Визуализация данных • Подключение библиотеки Matplotlib для визуализации. • Создание метода для визуализации данных x и y. • Передача данных в метод для создания графика. 00:24:21 Настройка линии • Настройка линии с помощью метода plot. • Изменение наклона линии для улучшения соответствия. • Объяснение необходимости изменения весов автоматически. 00:28:31 Функция потерь • Создание новой колонки для функции потерь. • Объяснение формулы для расчета абсолютного значения ошибки. • Устранение ошибок, чтобы они не поглощали друг друга. 00:31:48 Преобразование знака ошибки • Для получения только положительных ошибок нужно поменять знак. • Используем модуль для преобразования отрицательных значений в положительные. • Формула: abs(x). 00:32:42 Построение общей ошибки • Подсчитываем разницу между точками и складываем их. • Определяем общую ошибку как среднее значение. • Рассматриваем случай, когда ошибка равна нулю. 00:34:40 Работа с производными • Вставляем производные формулы в канву. • Используем производные для расчета коэффициентов. • Копируем и вставляем формулы для корректного расчета. 00:37:43 Проблемы с нулями 🚀 Вступай в сообщество: https://boosty.to/SENATOROV 🍑 Подписывайся на Telegram: https://t.me/RuslanSenatorov 🔥 Начни работать с криптовалютой на Bybit: https://www.bybit.com/invite?ref=MAN2VD 💰 Донат: https://www.donationalerts.com/c/sena... 💰 Стать спонсором : (USDT TRC20) TPWP9kuqqetDNPeLjAe51F1i2jPxwYYBDu (USDT BEP20) 0xf3db7ce90a55d1d25b7a6d1ded811fb2a7523f3d #математика #datascience #machinelearning математика с нуля, математика для дата сайнс, математика для машинного обучения, математика для чайников, математика для начинающих, математика для программистов, математика для data science, репетитор по математике, преподаватель по математике, учитель по математике, учитель математики, ментор по математике, тичер по математике, репетитор по дата сайнс с нуля, репетитор по высшей математике, репетитор по математике для взрослых, математика для заочников математика для дата аналитика

Comments
  • Илон Маск / ноябрь 2025 / все разработки Tesla 5 дней назад
    Илон Маск / ноябрь 2025 / все разработки Tesla
    Опубликовано: 5 дней назад
  • Python — полный курс для начинающих. Этот навык изменит твою жизнь. 1 год назад
    Python — полный курс для начинающих. Этот навык изменит твою жизнь.
    Опубликовано: 1 год назад
  • Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации 6 лет назад
    Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации
    Опубликовано: 6 лет назад
  • Алгоритмы на Python 3. Лекция №1 8 лет назад
    Алгоритмы на Python 3. Лекция №1
    Опубликовано: 8 лет назад
  • Как я УСКОРИЛ работу в 3 раза с помощью нейросетей 2 недели назад
    Как я УСКОРИЛ работу в 3 раза с помощью нейросетей
    Опубликовано: 2 недели назад
  • Но что такое нейронная сеть? | Глава 1. Глубокое обучение 8 лет назад
    Но что такое нейронная сеть? | Глава 1. Глубокое обучение
    Опубликовано: 8 лет назад
  • Рост цен на технику, продукты и машины. «Роснефть» и «Лукойл»: чем заменить нефтегазовые доходы? 13 часов назад
    Рост цен на технику, продукты и машины. «Роснефть» и «Лукойл»: чем заменить нефтегазовые доходы?
    Опубликовано: 13 часов назад
  • Теорема Байеса, геометрия изменения убеждений 5 лет назад
    Теорема Байеса, геометрия изменения убеждений
    Опубликовано: 5 лет назад
  • LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры 1 год назад
    LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры
    Опубликовано: 1 год назад
  • Краткое объяснение больших языковых моделей 11 месяцев назад
    Краткое объяснение больших языковых моделей
    Опубликовано: 11 месяцев назад
  • КАК УСТРОЕН TCP/IP? 1 год назад
    КАК УСТРОЕН TCP/IP?
    Опубликовано: 1 год назад
  • Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ 12 дней назад
    Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ
    Опубликовано: 12 дней назад
  • Neural networks
    Neural networks
    Опубликовано:
  • Essence of linear algebra
    Essence of linear algebra
    Опубликовано:
  • Суть матанализа, Глава 1 4 года назад
    Суть матанализа, Глава 1
    Опубликовано: 4 года назад
  • Что такое API? Простыми Словами Для Начинающих 4 месяца назад
    Что такое API? Простыми Словами Для Начинающих
    Опубликовано: 4 месяца назад
  • TypeScript ФУНДАМЕНТАЛЬНЫЙ КУРС от А до Я. Вся теория + практика 6 месяцев назад
    TypeScript ФУНДАМЕНТАЛЬНЫЙ КУРС от А до Я. Вся теория + практика
    Опубликовано: 6 месяцев назад
  • #2 Ruslan Senatorov | Английский для Data Science 1 месяц назад
    #2 Ruslan Senatorov | Английский для Data Science
    Опубликовано: 1 месяц назад
  • Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение 8 лет назад
    Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение
    Опубликовано: 8 лет назад
  • Химия - просто.  Урок 1 11 лет назад
    Химия - просто. Урок 1 "ПСЭ"
    Опубликовано: 11 лет назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5