У нас вы можете посмотреть бесплатно The First Rule of Data Science: Train-Test Split and the Bias-Variance Tradeoff или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Bridge the gap between Classical Statistics and Modern Machine Learning! In this video, we explore the fundamental protocol of every data scientist: The Train-Test Split. While statistics focuses on inference and p-values, machine learning focuses on generalization. We'll show you how to move beyond "memorizing the past" to building models that actually predict the unknown. In this video, you will learn: Inference vs. Generalization: The shift from describing a sample to predicting new data. The Bias-Variance Tradeoff: Finding the "Sweet Spot" between underfitting and overfitting. The 80/20 Rule: How to structure your training set (the textbook) and your test set (the exam). The Random Seed (42): Why reproducibility is the cornerstone of the scientific method. Data Leakage: How to avoid the "Optimistic Bias" that ruins real-world models. K-Fold Cross-Validation: The professional way to handle scarce data. Whether you are using Python, Scikit-Learn, or coming from an Econometrics background with Gujarati, this guide will ensure your models are robust and reliable.