У нас вы можете посмотреть бесплатно Mapping iron ore deposits with ASTER and Sentinel 2 using band ratios and PCA (Part 2) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
PCA is a statistical method that reduces the dimensionality of multispectral data. In simpler terms, it condenses information from many bands into a fewer number of new bands (called principal components) that capture most of the data's variance. The first few principal components typically hold the most significant information. In the context of iron ore mapping, PCA can help: Reduce redundancy in the data, simplifying visualization and analysis. Potentially enhance iron ore signatures by separating them from background variations in the original bands. Geologists can analyze the principal component images to identify areas with spectral characteristics indicative of iron-rich minerals. By combining band ratios and PCA, geologists can leverage the strengths of each technique to effectively map iron ore deposits in ASTER and Sentinel-2 imagery. Here are some additional points to consider: The specific band ratios and PCA techniques most successful will depend on the geology of your study area and the characteristics of the iron ore deposit you're targeting. Reference data, such as existing iron ore maps or field measurements, can be crucial for validating the results of your remote sensing analysis.