У нас вы можете посмотреть бесплатно European-American Seminar- Nonsteady Forcing of the Wind Turbine Main Bearing или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Wind turbines operate in the daytime surface layer region of the atmospheric boundary layer. We present key new knowledge of the nonsteady characteristics of the aerodynamic loads on a wind turbine rotor in response to the passage of coherent elongated surface layer eddy structure through the rotor disk. Of particular interest are the time changes in hub moment and force vectors acting at the rotor hub and on the main shaft, with consequent forcing of the main bearing. The aerodynamic responses are quantified with high-fidelity large-eddy simulations of the NREL 5 MW wind turbine embedded within a canonical daytime atmospheric boundary layer, with the rotor blades modeled using a state-of-the-art actuator line method. We find that whereas the rotation of the 3 blades through the time-averaged nonuniform velocity field over the rotor plane generates a highly periodic contribution to rotor hub moment and force, the passage of the rotor blades through the internal structure of the coherent atmospheric turbulence eddies creates strong enhancements and modulations to the periodic 3P responses, as well as the generation of strong nonperiodic hub load content at much lower and much higher frequencies. These correlate with the passage of clusters of coherent surface layer eddies and lead to the creation of exceptionally large peak-to-peak time changes in force acting on the main bearing. The largest time changes in main bearing force arise from specific 3P-with-high-frequency modulations that likely underlie premature main bearing failure and corresponding increases in levelized cost of energy. Acknowledgements: The analysis was developed by soon-to-be Dr. Jarred Kenworthy for his PhD research program at the University of Strathclyde in Glasgow, Scotland. The research program is in collaboration with Dr. Edward Hart at the University of Strathclyde and Dr. Jonathan Keller at the National Renewable Energy Laboratory in Boulder, Colorado, USA.