• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Philipp Krähenbühl - Point-based object detection скачать в хорошем качестве

Philipp Krähenbühl - Point-based object detection 4 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Philipp Krähenbühl - Point-based object detection
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Philipp Krähenbühl - Point-based object detection в качестве 4k

У нас вы можете посмотреть бесплатно Philipp Krähenbühl - Point-based object detection или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Philipp Krähenbühl - Point-based object detection в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Philipp Krähenbühl - Point-based object detection

August 11th, 2020. MIT CSAIL Abstract: Objects are commonly thought of as axis-aligned boxes in an image. Even before deep learning, the best performing object detectors classified rectangular image regions. On one hand, this approach conveniently reduces detection to image classification. On the other hand, it has to deal with a nearly exhaustive list of image regions that do not contain any objects. In this talk, I'll present an alternative representation of objects: as points. I'll show how to build an object detector from a keypoint detector of object centers. The presented approach is both simpler and more efficient (faster and/or more accurate) than equivalent box-based detection systems. Our point-based detector easily extends to other tasks, such as object tracking, monocular or Lidar 3D detection, and pose estimation. Most detectors, including ours, are usually trained on a single dataset and then evaluated in that same domain. However, it is unlikely that any user of an object detection system only cares about 80 COCO classes or 23 nuScenes vehicle categories in isolation. More likely than not, object classes needed in a down-stream system are either spread over different data-sources or not annotated at all. In the second part of this talk, I'll present a framework for learning object detectors on multiple different datasets simultaneously. We automatically learn the relationship between different objects annotations in different datasets and automatically merge them into common taxonomy. The resulting detector then reasons about the union of object classes from all datasets at once. This detector is also easily extended to unseen classes by fine-tuning it on a small dataset with novel annotations. Bio: Philipp is an Assistant Professor in the Department of Computer Science at the University of Texas at Austin. He received his Ph.D. in 2014 from the CS Department at Stanford University and then spent two wonderful years as a PostDoc at UC Berkeley. His research interests lie in Computer Vision, Machine learning, and Computer Graphics. He is particularly interested in deep learning, image understanding, and vision and action.

Comments
  • CV3DST - Object tracking 4 years ago
    CV3DST - Object tracking
    Опубликовано: 4 years ago
    33647
  • PointNet | Lecture 43 (Part 1) | Applied Deep Learning 4 years ago
    PointNet | Lecture 43 (Part 1) | Applied Deep Learning
    Опубликовано: 4 years ago
    19917
  • An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained) 4 years ago
    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
    Опубликовано: 4 years ago
    366354
  • DINO: Emerging Properties in Self-Supervised Vision Transformers (Facebook AI Research Explained) 4 years ago
    DINO: Emerging Properties in Self-Supervised Vision Transformers (Facebook AI Research Explained)
    Опубликовано: 4 years ago
    133451
  • Главный итог стамбульских переговоров (English subtitles) @Max_Katz 4 hours ago
    Главный итог стамбульских переговоров (English subtitles) @Max_Katz
    Опубликовано: 4 hours ago
    235900
  • DETR: End-to-End Object Detection with Transformers (Paper Explained) 4 years ago
    DETR: End-to-End Object Detection with Transformers (Paper Explained)
    Опубликовано: 4 years ago
    161461
  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 7 years ago
    PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
    Опубликовано: 7 years ago
    67238
  • Lecture 15: Object Detection 4 years ago
    Lecture 15: Object Detection
    Опубликовано: 4 years ago
    68102
  • Zachary Teed - Optimization Inspired Neural Networks for Multiview 3D 3 years ago
    Zachary Teed - Optimization Inspired Neural Networks for Multiview 3D
    Опубликовано: 3 years ago
    8820
  • КАК КОШКА ПРИРУЧИЛА ЧЕЛОВЕКА | Мудреныч (история на пальцах) 5 hours ago
    КАК КОШКА ПРИРУЧИЛА ЧЕЛОВЕКА | Мудреныч (история на пальцах)
    Опубликовано: 5 hours ago
    62151

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS