У нас вы можете посмотреть бесплатно [AAAI 25 presentation pre-record]Human and AI Perceptual Differences in Image Classification Errors или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Conference: AAAI 25 Oral Paper Title: Human and AI Perceptual Differences in Image Classification Errors ArXiv version: (Will update with camera ready version soon) https://arxiv.org/abs/2304.08733 Abstract of our work Artificial intelligence (AI) models for computer vision trained with supervised machine learning are assumed to solve classification tasks by imitating human behavior learned from training labels. Most efforts in recent vision research focus on measuring the model task performance using standardized benchmarks such as accuracy. However, limited work has sought to understand the perceptual difference between humans and machines. To fill this gap, this study first analyzes the statistical distributions of mistakes from the two sources and then explores how task difficulty level affects these distributions. We find that even when AI learns an excellent model from the training data, one that outperforms humans in overall accuracy, these AI models have significant and consistent differences from human perception. We demonstrate the importance of studying these differences with a simple human-AI teaming algorithm that outperforms humans alone, AI alone, or AI-AI teaming.