У нас вы можете посмотреть бесплатно AI Session Amnesia That Results in False Claims или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
AI doesn't just forget your architecture decisions - it confidently invents ones that never existed, causing silent architectural drift. Architecture Decision Records (ADRs) provide persistent context that prevents AI hallucination and keeps implementations aligned with actual decisions. Senior developers working with AI on multi-day projects face session amnesia daily. Your AI agent acts like previous conversations never happened. Design decisions evaporate at session boundaries. You spend Monday morning rebuilding context that existed Friday afternoon. This video reveals the five-layer repository architecture that makes context survive session boundaries. From 20+ years designing enterprise systems at Dutch Water Management Agency, telecommunications companies, and financial institutions. Now applying those same architectural principles to AI-assisted development workflows. In this video: • Learn the five failure modes that kill multi-session AI productivity • Apply repository architecture patterns to create persistent context • Implement forcing functions that create agent discipline • Build minimum viable repository structure you can start tomorrow • Real case study: How repository consultation eliminated false claims CHAPTERS: 02:00 Why AI Agents Forget Everything Yesterday 03:34 The Session Amnesia Pattern (4 Documented Symptoms) 07:28 Multi-Session Context Continuity Framework 11:53 Five-Layer Repository Architecture Solution 17:41 Evidence: Repository vs Session Memory Comparison 21:42 Minimum Viable Implementation (Master Plan + Proposal) 26:23 Next Steps and Series Connection RESULTS FROM REAL IMPLEMENTATION: • Repository consultation: 0 false claims, 0 corrections needed • Session amnesia approach: 3+ false claims, 4+ corrections per task • Document quality: 1091-line compliant output vs unpredictable results • Token efficiency: Single read to correct output vs correction cycles RELATED VIDEOS: • Stop AI From Destroying Your Codebase | Architecture Repository Pattern: • Architecture Repository: The Governance La... • Why AI Keeps Forgetting Your Architecture Decisions: • Why AI Keeps Forgetting Your Architecture ... • The Architecture Document Mistake That Breaks AI Governance: • MUST vs SHOULD: Words That Change AI Outputs CONNECT: • LinkedIn: / janiskazakovs • Channel: / @janisexplains • Email: youtube.contact@janisexplainsarchitecture.com • Website: https://www.janisexplainsarchitecture... Subscribe for weekly AI architecture patterns and enterprise system design frameworks from real transformation projects. ABOUT JANISEXPLAINS ARCHITECTURE: Software architecture tutorials for senior developers and solution architects. Real stories, proven frameworks, measurable results from 20+ years in telecommunications, finance, and government systems. #AIArchitecture #MultiSessionAI #SystemDesign #SoftwareArchitecture #SolutionArchitect