У нас вы можете посмотреть бесплатно WEIGHT OF FUNDAMENTAL REPRESENTATION OF SU(2) || ELEMENTARY PARTICLE PHYSICS || MSC PHYSICS || HINDI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The weight of the fundamental representation of the special unitary group SU(2) is often expressed in terms of its highest weight. SU(2), #representation theory, #spin, #fundamental representationSU(2) Representation theory Spin Fundamental representation Highest weight Quantum mechanics Particle physics Pauli matrices Lie algebra Angular momentumWhat: Representation, SU(2), Quantum Spin Why: Representation Theory, Particle Physics, Quantum Mechanics When: Quantum Spin, Representation Theory, Particle Physics Where: Particle Physics, Quantum Mechanics, Representation Theory Who: Physicists, Mathematicians How: Representation, SU(2), Quantum Mechanics These matrices generate the Lie algebra of SU(2), and the action of SU(2) on its fundamental representation is given by exponentiating elements of this Lie algebra. Physically, the fundamental representation of SU(2) describes the behavior of spin-1/2 particles under rotations. For example, when you rotate a spin-1/2 particle by \(360^\circ\) (or \(2\pi\) radians), its wavefunction acquires a phase factor of \(-1\), which is a manifestation of the nontrivial topology of the SU(2) group. This phase factor is crucial in understanding phenomena like the Aharonov-Bohm effect and the behavior of spinors in relativity. Overall, the fundamental representation of SU(2) is fundamental not only in mathematics but also in physics, particularly in the description of spin and related quantum phenomena.