У нас вы можете посмотреть бесплатно The Revelation of Sonmi 451 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
An annular domain combines both convex and concave boundaries, which generate respectively regular and chaotic dynamics. There are, in fact, two kinds of trajectories: those colliding only with the outer boundary behave just like for the billiard in a circle, while those colliding with both circles are dispersed more - though conservation of angular momentum prevents them from being chaotic. For waves, the separation between both dynamics is not so clear, but one can see traces of it early in the simulation. Music: "Arps Solina", by Mylar Melodies@mylarmelodies The simulation solves the wave equation with a little bit of "elasticity" (a harmonic restoring force). The algorithm is adapted from this paper: https://hplgit.github.io/fdm-book/doc... Current version of the C code used to make these animations: https://github.com/nilsberglund-orlea... https://www.idpoisson.fr/berglund/sof... Many thanks to my colleague Marco Mancini for helping me to accelerate my code! Why don't some of you try some other billiard shapes, parameter values and colors, and post the results on YouTube? Here is an example: • Poisson's Spot You may be interested in some science outreach articles: https://images.math.cnrs.fr/_Berglund...