У нас вы можете посмотреть бесплатно 39. Double Q Learning || End to End AI Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Unlock the Power of Learning through Trial and Error: Explore the World of Reinforcement Learning! Welcome to the world of Reinforcement Learning! In this YouTube playlist, you will discover the power of learning through trial and error. This playlist covers all topics related to Reinforcement Learning, ranging from basic concepts to advanced techniques. You will learn how Reinforcement Learning can be applied to various domains such as robotics, game development, finance, healthcare, and more. Each topic is accompanied by practical examples and implementation in Python, so you can get hands-on experience and apply your newfound knowledge to your own projects. Notebook used: https://github.com/codehax41/Reinforc... Topics covered in this playlist include: Introduction to Reinforcement Learning: Learn about the basic concepts and terminology of Reinforcement Learning, such as agents, environments, states, actions, rewards, and more. Markov Decision Processes: Explore how Markov Decision Processes (MDPs) can be used to model sequential decision-making problems, and learn how to implement them in Python. Q-Learning: Discover how Q-Learning can be used to learn the optimal action-selection policy for an agent in an MDP, and learn how to implement it in Python. Deep Q-Networks: Dive deeper into Q-Learning by learning how Deep Q-Networks (DQNs) can be used to handle high-dimensional state spaces, and learn how to implement them in Python. Policy Gradient Methods: Learn about Policy Gradient Methods, which can be used to learn the optimal policy directly, and learn how to implement them in Python. Actor-Critic Methods: Explore Actor-Critic Methods, which combine the advantages of both value-based and policy-based methods, and learn how to implement them in Python. By the end of this playlist, you will have a solid understanding of Reinforcement Learning and be able to apply it to a wide range of real-world problems. So, join us on this exciting journey of learning and discovery! ------------------------------------------------------------------------------------------------------------- #MachineLearning, #ReinforcementLearningPlaylist, #RL, #AI, #DataScience, #LearnAI,#ReinforcementLearning ------------------------------------------------------------------------------------------------------------- All Playlist in my channel Machine Learning Playlist: • Machine Learning Beginner to Expert || End... Deep Learning Playlist: • Плейлист AI Projects Playlist: • Плейлист Stats & Probability Playlist: • Statistics & Probability for Data Scince --------------------------------------------------------------------------------------------------------------- Connect with me here: Github: https://github.com/codehax41 Facebook: / ramsundar.12380 Instagram: / mee_iamram --------------------------------------------------------------------------------------------------------------- THANKS & Love you all!!! ❤️ ---------------------------------------------------------------------------------------------------------------