У нас вы можете посмотреть бесплатно ETH Zürich AISE: Physics-Informed Neural Networks – Introduction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
↓↓↓ LECTURE OVERVIEW BELOW ↓↓↓ ETH Zürich AI in the Sciences and Engineering 2024 Course Website (links to slides and tutorials): https://www.camlab.ethz.ch/teaching/a... Lecturers: Dr. Ben Moseley and Prof. Siddhartha Mishra ▬ Lecture Content ▬▬▬ 0:00 - Recap: previous lecture 3:25 - Using neural networks to carry out simulation 6:21 - What is a physics-informed neural network (PINN)? 18:50 - PINNs as a general framework for solving PDEs 20:56 - PINNs for solving the Burgers' equation 28:00 - History and state of research 29:49 - How to train PINNs 35:58 - 🔴 Live coding a PINN - part 1 | Code: https://github.com/benmoseley/AISE-2024 49:29 - Training considerations 54:01 - PINNs from a ML perspective 58:32 - Key scientific tasks 1:00:29 - Simulation with PINNs 1:06:05 - Solving inverse problems with PINNs 1:12:18 - 🔴 Live coding a PINN - part 2 | Code: https://github.com/benmoseley/AISE-2024 1:20:14 - Equation discovery with PINNs ▬ Course Overview ▬▬▬ Lecture 1: Course Introduction • ETH Zürich AISE: Course Introduction Lecture 2: Introduction to Deep Learning Part 1 • ETH Zürich AISE: Introduction to Deep... Lecture 3: Introduction to Deep Learning Part 2 • ETH Zürich AISE: Introduction to Deep... Lecture 4: Importance of PDEs in Science • ETH Zürich AISE: Importance of PDEs i... Lecture 5: Physics-Informed Neural Networks – Introduction • ETH Zürich AISE: Physics-Informed Neu... Lecture 6: Physics-Informed Neural Networks – Limitations and Extensions Part 1 • ETH Zürich AISE: Physics-Informed Neu... Lecture 7: Physics-Informed Neural Networks – Limitations and Extensions Part 2 • ETH Zürich AISE: Physics-Informed Neu... Lecture 8: Physics-Informed Neural Networks – Theory Part 1 • ETH Zürich AISE: Physics-Informed Neu... Lecture 9: Physics-Informed Neural Networks – Theory Part 2 • ETH Zürich AISE: Physics-Informed Neu... Lecture 10: Introduction to Operator Learning Part 1 • ETH Zürich AISE: Introduction to Oper... Lecture 11: Introduction to Operator Learning Part 2 • ETH Zürich AISE: Introduction to Oper... Lecture 12: Fourier Neural Operators • ETH Zürich AISE: Fourier Neural Opera... Lecture 13: Spectral Neural Operators and Deep Operator Networks • ETH Zürich AISE: Spectral Neural Oper... Lecture 14: Convolutional Neural Operators • ETH Zürich AISE: Convolutional Neural... Lecture 15: Time-Dependent Neural Operators • ETH Zürich AISE: Time-Dependent Neura... Lecture 16: Large-Scale Neural Operators • ETH Zürich AISE: Large-Scale Neural O... Lecture 17: Attention as a Neural Operator • ETH Zürich AISE: Attention as a Neura... Lecture 18: Windowed Attention and Scaling Laws • ETH Zürich AISE: Windowed Attention a... Lecture 19: Introduction to Hybrid Workflows Part 1 • ETH Zürich AISE: Introduction to Hybr... Lecture 20: Introduction to Hybrid Workflows Part 2 • ETH Zürich AISE: Introduction to Hybr... Lecture 21: Neural Differential Equations • ETH Zürich AISE: Neural Differential ... Lecture 22: Introduction to Diffusion Models • ETH Zürich AISE: Introduction to Diff... Lecture 23: Introduction to JAX • ETH Zürich AISE: Introduction to JAX Lecture 24: Symbolic Regression and Model Discovery • ETH Zürich AISE: Symbolic Regression ... Lecture 25: Applications of AI in Chemistry and Biology Part 1 • ETH Zürich AISE: Applications of AI i... Lecture 26: Applications of AI in Chemistry and Biology Part 2 • ETH Zürich AISE: Applications of AI i... ▬ Course Description ▬▬▬ AI is having a profound impact on science by accelerating discoveries across physics, chemistry, biology, and engineering. This course presents a highly topical selection of AI applications across these fields. Emphasis is placed on using AI, particularly deep learning, to understand systems modelled by PDEs, and key scientific machine learning concepts and themes are discussed. ▬ Course Learning Objectives ▬▬▬ Aware of advanced applications of AI in the sciences and engineering Familiar with the design, implementation, and theory of these algorithms Understand the pros/cons of using AI and deep learning for science Understand key scientific machine learning concepts and themes