У нас вы можете посмотреть бесплатно 1W-MINDS: Stéphane Mallat, July 2, 2020, Descartes versus Bayes: Harmonic Analysis for High... или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Is high-dimensional learning about function approximation or Bayes probability estimation? We shall argue that solutions go through finding discriminative variables which concentrate, according to Bayes and statistical physics. Harmonic analysis gives a mathematical framework to define and analyze such variables from prior information on symmetries. The results of deep neural network architectures are opening new horizons beyond Fourier, wavelets and sparsity. What is being learned through optimization? Phase was long forgotten and is making its way back. This lecture outlines harmonic analysis challenges raised by classification and data generation with deep convolutional neural networks. We consider applications to image generation and classification, including ImageNet.