У нас вы можете посмотреть бесплатно How The Field Museum Unlocks New Research Possibilities with Vision AI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
If you have millions of insect specimens, how do you digitize them and transform the imagery into useful research data? In this interview with Elizabeth Postema, Postdoctoral Researcher at the Field Museum of Natural History, we explored how researchers from several institutions are using computer vision to digitize over 8 million insect specimens, turning them into valuable data for large-scale scientific research. Elizabeth shared insights into the development of DrawerDissect, a custom software solution that automates the transcription of specimen data and enables rapid analysis of insect features like color and size. She'll explain how they used Roboflow to build custom vision models and accelerated a process that would have been impossible with traditional methods. Chapters 00:00 Introduction: Digitizing Insect Specimens with Vision AI 02:50 Why Museums Need to Digitize Collections 09:13 Challenges in Gathering Data to Study Morphology 13:28 Using Custom Vision AI to Speed Up Digitization 19:29 Measuring Insect Specimens with Segmentation 21:33 Text Detection and Transcription in Specimen Drawers 26:50 Using Data From Thousands of Specimens to Verify Bergmann's Rule 30:17 Imaging Specimens: 20 Years vs. A Few Weeks 35:22 Using Custom AI to Classify Species 38:04 Live Demo: Getting Started with DrawerDissect 44:09 Collecting Images and Calibrating Measurements 49:10 Journey from Researcher to AI Expert 54:12 Final Thoughts, Additional Audience Questions, and Future Direction Join a future live session: https://roboflow.com/webinar Read the pre-print research paper here: https://ecoevorxiv.org/repository/vie...