У нас вы можете посмотреть бесплатно Learning Rate Schedules 📉📈 Step Decay, Cosine, Cyclical & More или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Did you know that a fixed learning rate can hold your deep learning model back? 😮 Too high, and you overshoot the optimum. Too low, and training crawls. That’s why we use Learning Rate Schedules — dynamic techniques that adjust the learning rate during training for faster convergence, better fine-tuning, and improved generalization. In this video, I’ll explain Learning Rate Schedules step by step, tailored for both beginners and professionals. 🔑 What you’ll learn in this video: ✅ Why fixed learning rates fail in practice ✅ Popular schedules and when to use them: Step Decay ➝ simple & effective for large datasets Exponential Decay ➝ smooth, consistent convergence Cosine Annealing ➝ powerful for deep networks & fine-tuning Cyclical Learning Rates ➝ helps escape local minima ✅ Key benefits: faster convergence ⚡, better fine-tuning 🎯, improved generalization 📈 ✅ Practical tips on choosing the right schedule for your model and dataset 💡 Key Insight: Learning-rate schedules let you enjoy the best of both worlds — high learning rates to train fast, and low learning rates to fine-tune performance. 👉 If you found this helpful, don’t forget to 👍 like, 🔔 subscribe, and 💬 share your thoughts in the comments — I’ll be happy to answer your questions! 🔖 Hashtags #learningrateschedule #deeplearning #machinelearning #mlops #datascience #stepdecay #exponentialdecay #cosineannealing #cyclicallearningrate #optimization #trainingtips #neuralnetworks