• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

A brief introduction to the regularity theory of optimal transport скачать в хорошем качестве

A brief introduction to the regularity theory of optimal transport 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
A brief introduction to the regularity theory of optimal transport
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: A brief introduction to the regularity theory of optimal transport в качестве 4k

У нас вы можете посмотреть бесплатно A brief introduction to the regularity theory of optimal transport или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон A brief introduction to the regularity theory of optimal transport в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



A brief introduction to the regularity theory of optimal transport

Optimal transport is a classic field of mathematics which studies the most cost-efficient allocation of resources. It has many applications, both in the real world as well as in theoretical mathematics. In this video, I discuss the regularity theory of optimal transport, which tries to understand when transport will be continuous. The goal is to give a history of this problem and to indicate some current areas of research. 00:00 Introduction 01:10 What is optimal transport? 04:41 When is optimal transport deterministic? 06:35 When is optimal transport continuous? 08:59 The work of Ma, Trudinger and Wang 09:46 The MTW condition 12:27 What is the MTW tensor? 15:01 An open question 15:51 Final thoughts This video is adapted from a talk that I gave at GSI2021. I apologize in advance for the uneven audio. In the future, I'll try to record in a single location to keep the levels consistent. Please let me know if you have any other suggests for how to improve this video, or any future videos. If you are interested in the fugue excerpt at the end of the video, you can download a rough version of the sheet music here. https://differentialgeometri.files.wo... There are no dynamic markings or indications where each statement comes in. Other than the videos by Flavien Léger and the diagram taken from Villani's book, the other animations and images were created using Procreate and Keynote. Technical notes: The animation first appearing at :39 in the video depicts the notion of displacement interpolation. Roughly speaking, this considers a continuous-time version of optimal transport which flows from the initial distribution to the final one. By doing so, you can study the distributions at intermediate times. This idea was invented by McCann and plays an important role in functional analysis and the notion of Ricci curvature for metric-measure spaces. The animation first appearing at :57 into the video (and later at 13:43) is meant to show that the injectivity domains of the round unit sphere are convex (they are simply disks of radius pi). This fact plays a central role for optimal transport on a Riemannian manifold. A very deep theorem of Figalli, Rifford and Villani shows that this remains true for small deformations of the sphere. At 4:35 in the video, I state that the solution to the Kantorovich problem exists. To be more accurate, you need to make some mild assumptions on the costs and measure to obtain a solution. Roughly speaking, you want the cost function to be continuous and for a coupling to exist whose total cost is finite. The precise statements of Kantorovich's duality theorem are covered in great detail in Chapter 5 of Villani's text "Optimal Transport: Old and New." The dimension of the castle and sandpile is taken to be n. I realized that I didn't state what n is and only had it written on the slide with the existence theorem for the Monge problem. At 8:30 in the video, I noted that the Jacobian equation simplifies considerably for the squared-distance cost in Euclidean space. It is worth remarking that the transport also simplifies: it is given by the usual sub-differential of the potential u. When describing Loeper's result at 13:13 in the video, I state that if the MTW condition fails that we can find smooth measures with "convex supports" such that the solution to the Monge map has discontinuities. Here, the precise condition is actually that the supports are relatively c-convex; the phrase "convex supports" is used as a short-hand for this.

Comments
  • Optimal Transport and Information Geometry for  Machine Learning and Data Science 3 года назад
    Optimal Transport and Information Geometry for Machine Learning and Data Science
    Опубликовано: 3 года назад
  • Alessio Figalli - On the regularity of optimal transport maps - IPAM at UCLA 7 месяцев назад
    Alessio Figalli - On the regularity of optimal transport maps - IPAM at UCLA
    Опубликовано: 7 месяцев назад
  • Percolation: a Mathematical Phase Transition 3 года назад
    Percolation: a Mathematical Phase Transition
    Опубликовано: 3 года назад
  • The Concept So Much of Modern Math is Built On | Compactness 2 года назад
    The Concept So Much of Modern Math is Built On | Compactness
    Опубликовано: 2 года назад
  • 3 года назад
    "Optimal Transport for Statistics and Machine Learning" Prof. Philippe Rigollet, MIT
    Опубликовано: 3 года назад
  • Statistical Mirror Symmetry 2 года назад
    Statistical Mirror Symmetry
    Опубликовано: 2 года назад
  • Marco Cuturi - A Primer on Optimal Transport Part 1 6 лет назад
    Marco Cuturi - A Primer on Optimal Transport Part 1
    Опубликовано: 6 лет назад
  • Shape Analysis (Lecture 19): Optimal transport 4 года назад
    Shape Analysis (Lecture 19): Optimal transport
    Опубликовано: 4 года назад
  • Random walks in 2D and 3D are fundamentally different (Markov chains approach) 3 года назад
    Random walks in 2D and 3D are fundamentally different (Markov chains approach)
    Опубликовано: 3 года назад
  • Soheil Kolouri - Wasserstein Embeddings in the Deep Learning Era 4 года назад
    Soheil Kolouri - Wasserstein Embeddings in the Deep Learning Era
    Опубликовано: 4 года назад
  • Hyperbolic Information Geometry 2 года назад
    Hyperbolic Information Geometry
    Опубликовано: 2 года назад
  • A Swift Introduction to Geometric Algebra 5 лет назад
    A Swift Introduction to Geometric Algebra
    Опубликовано: 5 лет назад
  • Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман 1 месяц назад
    Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман
    Опубликовано: 1 месяц назад
  • Introduction to the Wasserstein distance 5 лет назад
    Introduction to the Wasserstein distance
    Опубликовано: 5 лет назад
  • Marco Cuturi - A Primer on Optimal Transport Part 2 6 лет назад
    Marco Cuturi - A Primer on Optimal Transport Part 2
    Опубликовано: 6 лет назад
  • Optimal Transport, part 1 - Marco Cuturi - MLSS 2020, Tübingen Трансляция закончилась 5 лет назад
    Optimal Transport, part 1 - Marco Cuturi - MLSS 2020, Tübingen
    Опубликовано: Трансляция закончилась 5 лет назад
  • Geometric PDE - Curvature and Regularity of Optimal Transport - Part I - Villani 9 лет назад
    Geometric PDE - Curvature and Regularity of Optimal Transport - Part I - Villani
    Опубликовано: 9 лет назад
  • A Sensible Introduction to Category Theory 3 года назад
    A Sensible Introduction to Category Theory
    Опубликовано: 3 года назад
  • Что такое квантовая теория 13 лет назад
    Что такое квантовая теория
    Опубликовано: 13 лет назад
  • Optimal Transport: a topic every mathematician and physicist should know. 11 месяцев назад
    Optimal Transport: a topic every mathematician and physicist should know.
    Опубликовано: 11 месяцев назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5