У нас вы можете посмотреть бесплатно K-Means Clustering in Machine Learning | Telugu или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#k-means #kmeansclustering #machinelearningalgorithms Program: importing libraries import numpy as nm import matplotlib.pyplot as mtp import pandas as pd Importing the dataset dataset = pd.read_csv('Mall_Customers.csv') x = dataset.iloc[:, [3, 4]].values #finding optimal number of clusters using the elbow method from sklearn.cluster import KMeans wcss_list= [] #Initializing the list for the values of WCSS #Using for loop for iterations from 1 to 10. for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', random_state= 42) kmeans.fit(x) wcss_list.append(kmeans.inertia_) mtp.plot(range(1, 11), wcss_list) mtp.title('The Elobw Method Graph') mtp.xlabel('Number of clusters(k)') mtp.ylabel('wcss_list') mtp.show() #training the K-means model on a dataset kmeans = KMeans(n_clusters=5, init='k-means++', random_state= 42) y_predict= kmeans.fit_predict(x) #visulaizing the clusters mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c = 'blue', label = 'Cluster 1') #for first cluster mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c = 'green', label = 'Cluster 2') #for second cluster mtp.scatter(x[y_predict== 2, 0], x[y_predict == 2, 1], s = 100, c = 'red', label = 'Cluster 3') #for third cluster mtp.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4') #for fourth cluster mtp.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') #for fifth cluster mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroid') mtp.title('Clusters of customers') mtp.xlabel('Annual Income (k$)') mtp.ylabel('Spending Score (1-100)') mtp.legend() mtp.show()