У нас вы можете посмотреть бесплатно Learnable Test Time Augmentation (TTA) in PyTorch (Code + Evaluation) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this tutorial, we’ll explore how to enhance image segmentation performance during inference using Learnable Test Time Augmentation (Learnable TTA). Unlike Traditional TTA, which blindly averages predictions from augmented views, Learnable TTA uses a small trainable module to intelligently combine outputs — resulting in significantly improved accuracy and smarter model behavior. 📌 We’ll be using a pre-trained U-Net model in PyTorch and evaluating it on a multi-class weed segmentation dataset. The results show how Learnable TTA can deliver better segmentation masks without changing the model or retraining on new data. This technique is especially useful in high-stakes domains like medical imaging, agriculture, and autonomous driving, where prediction confidence and clarity matter. ⏱️ Timestamps: 00:00 - Introduction 00:15 - What is Test Time Augmentation (TTA)? 00:43 - Limitations of Traditional TTA 01:25 - What is Learnable TTA? 02:03 - Performance Comparison 03:27 - Implementing Learnable TTA with PyTorch 04:50 - Image & Mask Processing 07:41 - Apply Augmentations & Make Predictions 09:14 - Building a Learnable TTA Module 11:00 - Training Learnable TTA on Validation Set 13:38 - Evaluating Results: Traditional vs Learnable 17"09 - Execution of the Program 20:04 - Visualizing Predictions and Accuracy Boost 21:19 - Final Thoughts 📘 In this video, you’ll learn: What is Test Time Augmentation, and how does it work Why Traditional TTA has limitations How to design and train a Learnable TTA module Combine multiple predictions more intelligently Visualize and compare segmentation improvements Analyze performance using F1 Score and IoU 💡 Smarter Fusion = Better Segmentation! 🔗 GitHub Repo: https://github.com/nikhilroxtomar/Mul... 📸 Dataset: https://figshare.com/articles/dataset... 🎥 Related Videos: Multiclass Image Segmentation in PyTorch: • Multiclass Image Segmentation in PyTorch |... Implementing GradCAM on UNet with PyTorch for Multi-Class Segmentation: • Implementing GradCAM on UNet with PyTorch ... Test Time Augmentation in Segmentation (TTA): • Test Time Augmentation(TTA) for Multiclass... 💖 Support My Work: ☕ Buy me a coffee: https://www.buymeacoffee.com/nikhilro... 💬 Join the channel as a member: / @idiotdeveloper 🌐 Stay Connected: 📘 Blog: https://idiotdeveloper.com | https://sciencetonight.com 📢 Telegram: https://t.me/idiotdeveloper 📘 Facebook: / idiotdeveloper 🐦 Twitter: / nikhilroxtomar 📸 Instagram: / nikhilroxtomar 🎁 Patreon: / idiotdeveloper