У нас вы можете посмотреть бесплатно ► 5. Градиентный спуск. Часть 2 | Курс Нейронные Сети. или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
✅ Курсы с задачами: ► Нейронные сети с задачами: https://clck.ru/3QMA9q ► Pytorch с задачами: https://clck.ru/3QKioT ► Numpy с задачами: https://clck.ru/3QKipY ► Object Detection с задачами: https://clck.ru/3QKiq5 ► Pandas с задачами: https://clck.ru/3QKipC ✅ Мой Telegram канал: https://t.me/dubinin_ser ✅ Telegram группы: ► Pytorch: https://t.me/PyTorch_for_you ► Pandas: https://t.me/pandas_for_you ► Numpy: https://t.me/numpy_for_you Ссылка на код (скачать файл) - https://clck.ru/3Qwn5g. Git - https://clck.ru/3QPBCH ================================================= Этот курс познакомит вас с ключевыми концепциями нейронных сетей — от простых перцептронов до методов глубокого обучения. Мы разберём основные архитектуры (MLP, CNN и трансформеры), принципы обучения, оптимизации и регуляризации. В каждом видео будут понятные визуализации и пошаговые объяснения, чтобы вы быстро могли применять полученные знания. Курс подойдёт разработчикам, студентам и всем, кто хочет решать задачи компьютерного зрения, обработки текста и прогнозирования. По итогам вы сможете строить, обучать и оценивать собственные нейросети и интегрировать их в проекты. ================================================= В этом видео мы реализуем алгоритм градиентного спуска в коде. И на очень простом примере разберём некоторые детали, которые позволят получить более хорошие результаты после обучения модели. Тайм-коды: 00:00 - Введение. 01:05 - Градиентный спуск. 09:49 - Стохастический градиентный спуск. 20:41 - Разница между MSE и MAE. Теги: #pytorch #AI #objectdetection #нейросеть