У нас вы можете посмотреть бесплатно Knowledge Distillation Demystified: Techniques and Applications или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Delve deep into knowledge distillation, a powerful technique for optimizing machine learning models, particularly in natural language processing (NLP). Knowledge distillation transfers knowledge from a large, complex model (the teacher) to a smaller, more efficient model (the student). Charlie Dickens, an applied research scientist at Snorkel AI, guides you through the fundamental concepts of knowledge distillation, including its benefits, methodologies, and real-world applications. He starts by establishing a common understanding of knowledge distillation, breaking it down into two main steps: extraction and transfer. You will learn how to identify target skills and curate seed knowledge to effectively train your student model. Charlie explores techniques for knowledge extraction, such as teacher labeling, hidden representations, synthetic data, and feedback. Charlie offers insight into the latest research and advancements in knowledge distillation, particularly the innovative data-centric approach being developed at Snorkel AI. This is an excerpt from a webinar. View the full event here: • Model Distillation: From Large Models to E... See more videos on ai data development here: • AI Data Development: Building Better AI Th... #knowledgedistillation #ai #llm