• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained скачать в хорошем качестве

Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained 5 дней назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained в качестве 4k

У нас вы можете посмотреть бесплатно Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Market Regime Detection Using ML: Dynamic Capital Allocation Strategy Explained

In this video, Aparna Singhal explains how she built a machine-learning-based market regime detection strategy using market breadth and Python. This video features an in-depth conversation between Aparna Singhal, an independent trader, and Mohak Pachisia, discussing her EPAT final project focused on regime classification, capital allocation, and drawdown control. Aparna walks through her journey from discretionary trading to systematic thinking, where she observed that markets move through distinct regimes rather than in a single direction. To address this, she designed a long-only strategy on the Nifty 500 using market breadth indicators and multiple machine learning classifiers. Key topics covered: Market regime detection with ML Feature engineering using market breadth Random Forest classification Regime-based position sizing Backtesting vs buy-and-hold This is a technical, educational walkthrough, not a performance pitch. The focus is on process, modeling decisions, and risk management, making it relevant for traders, quants, and professionals exploring systematic trading. ➡️ Download the codes from the link below: https://bit.ly/4kkKYm4 Join EPAT - Executive Programme in Algorithmic Trading: https://bit.ly/3ZOQPXr Learn to apply AI and ML in trading in a practical hands-on manner EPAT syllabus on Machine learning & AI: https://bit.ly/45NlzM9 Free self-paced course for beginners: https://bit.ly/4c7i0UK Apply AI in trading strategies: https://bit.ly/3Zd898r AI in portfolio management: https://bit.ly/4buDVoK 🎯 What You’ll Learn: -The framework for building a Machine Learning model to detect four distinct market regimes: Bull, Bear, High Volatility, and Low Volatility. -How to utilize Market Breadth indicators—such as participation rates and stocks above moving averages—to find a trading edge. -Technical methods to eliminate look-ahead bias and manage transaction costs using signal smoothing and persistence filters. -A comparison between Active (4-way) and Passive (2-regime) strategies to mitigate drawdowns and outperform a buy-and-hold benchmark. Timestamps / Chapters 0:00 - Introduction: The importance of price and features 1:32 - Why Market Breadth is a trading edge 2:47 - Strategy Overview: Nifty 500 Long-only approach 5:50 - The role of mentorship in building ML models 7:01 - 5-Step Project Framework: Data to Backtesting 8:02 - Handling Survivorship Bias in historical data 9:57 - Defining Target Variables & Z-Score Standardization 12:12 - Why High Volatility requires immediate protection 13:16 - Feature Engineering: Momentum & Participation Rate 15:56 - Managing Look-Ahead Bias in Python 19:03 - Analyzing Feature Correlation & Histograms 20:59 - Training the Random Forest Classifier 23:47 - Smoothing Signals to reduce transaction costs 27:40 - Strategy 1 Results: Active Regime Management 31:13 - Strategy 2 Results: Passive Investor Crash Protection 🎓 About the Speaker: Aparna Singhal Aparna Singhal is a quantitative research and trading professional and an EPATian with 3+ years of experience across equities, commodities, and cryptocurrency markets, as well as equity research and market analysis. She also has a strong foundation in credit analysis from her previous role in Wholesale Banking at IDFC FIRST Bank. 🎓 About the Speaker: Mohak Pachisia Mohak Pachisia is a Senior Quantitative Researcher at QuantInsti, specializing in trading strategy development, financial modeling, and quantitative research. Before joining QuantInsti, he worked in the Risk and Quant Solutions division at Evalueserve, where he also led the learning and development function for the Quant team. About EPAT The EPAT program by QuantInsti is a structured learning track focused on algorithmic and quantitative trading. It emphasizes Python-based strategy development, backtesting, risk management, and applied projects guided by mentors. 💡 Key Takeaways: -Market Breadth vs. Index Price: The Nifty 500 is used because it captures the market essence across small, mid, and large-cap stocks more effectively than index price alone. -The Smoothing Effect: Implementing a persistence filter (requiring a signal for 4 out of 5 days) reduces "spikes" and lowers unnecessary transaction costs. -Volatility Sensitivity: High volatility regimes are intentionally not smoothed because they require "instant protection" to save capital from rapid falls. -Risk-Adjusted Performance: The primary contribution of this ML model is lowering the downside and mitigating drawdowns rather than just increasing upside. Keywords Machine Learning, Market Regime Detection, Random Forest Classifier, Algorithmic Trading, Capital Allocation, Nifty 500, Python for Finance, Market Breadth, Sharpe Ratio, Risk Management, Quantitative Analysis, Drawdown Mitigation Hashtags #MachineLearning #AlgorithmicTrading #MarketRegimes #PythonTrading #RiskManagement #Nifty500 #QuantFinance #DataScience #tradingstrategy

Comments
  • Banks Don’t Own Bitcoin… But They Control the Price 7 часов назад
    Banks Don’t Own Bitcoin… But They Control the Price
    Опубликовано: 7 часов назад
  • Trading Smaller Made Me Consistent — Trading Big Almost Ended My Career 10 дней назад
    Trading Smaller Made Me Consistent — Trading Big Almost Ended My Career
    Опубликовано: 10 дней назад
  • Внутридневная подразумеваемая волатильность: что показывают данные Python и опционов 2 недели назад
    Внутридневная подразумеваемая волатильность: что показывают данные Python и опционов
    Опубликовано: 2 недели назад
  • 10 категорий возврата к среднему значению: парная торговля, VIX и машинное обучение. 2 месяца назад
    10 категорий возврата к среднему значению: парная торговля, VIX и машинное обучение.
    Опубликовано: 2 месяца назад
  • Algorithmic Trading – Machine Learning & Quant Strategies Course with Python 2 года назад
    Algorithmic Trading – Machine Learning & Quant Strategies Course with Python
    Опубликовано: 2 года назад
  • EPAT Lecture Series : Market Microstructure - Quantinsti 13 лет назад
    EPAT Lecture Series : Market Microstructure - Quantinsti
    Опубликовано: 13 лет назад
  • Ramesh Damani on Anthropic Vs Indian IT | Defense & Critical Minerals | Can India Survive Trump 2.0? 5 дней назад
    Ramesh Damani on Anthropic Vs Indian IT | Defense & Critical Minerals | Can India Survive Trump 2.0?
    Опубликовано: 5 дней назад
  • Kite Connect Core Trading Operations: Polling vs. WebSocket Ticker, Orders, Positions & Rate Limits 3 месяца назад
    Kite Connect Core Trading Operations: Polling vs. WebSocket Ticker, Orders, Positions & Rate Limits
    Опубликовано: 3 месяца назад
  • Andrej Karpathy: Software Is Changing (Again) 7 месяцев назад
    Andrej Karpathy: Software Is Changing (Again)
    Опубликовано: 7 месяцев назад
  • Worst Decision Of RBI, Demonetisation, PM Modi & Indian Economy - Raghuram Rajan | FO151 Raj Shamani 2 года назад
    Worst Decision Of RBI, Demonetisation, PM Modi & Indian Economy - Raghuram Rajan | FO151 Raj Shamani
    Опубликовано: 2 года назад
  • Путина предали? / Требование досрочных выборов президента 3 часа назад
    Путина предали? / Требование досрочных выборов президента
    Опубликовано: 3 часа назад
  • Tom Sosnoff: Inside the Mind of a Trading Legend | In The Money by Zerodha Podcast 01 | Full Episode 2 месяца назад
    Tom Sosnoff: Inside the Mind of a Trading Legend | In The Money by Zerodha Podcast 01 | Full Episode
    Опубликовано: 2 месяца назад
  • Лучший документальный фильм про создание ИИ 4 недели назад
    Лучший документальный фильм про создание ИИ
    Опубликовано: 4 недели назад
  • 'The Good, The Bad And The Way Forward': AAP MP Raghav Chadha On Union Budget 2026 | FM Sitharaman 1 день назад
    'The Good, The Bad And The Way Forward': AAP MP Raghav Chadha On Union Budget 2026 | FM Sitharaman
    Опубликовано: 1 день назад
  • Trading Psychology Event | A Trading Framework | Part 5 6 лет назад
    Trading Psychology Event | A Trading Framework | Part 5
    Опубликовано: 6 лет назад
  • 'Increase Standard Deduction &...': Raghav Chadha's 4 Recommendations To FM Nirmala Sitharaman 1 день назад
    'Increase Standard Deduction &...': Raghav Chadha's 4 Recommendations To FM Nirmala Sitharaman
    Опубликовано: 1 день назад
  • Generative AI Vs Agentic AI Vs AI Agents 9 месяцев назад
    Generative AI Vs Agentic AI Vs AI Agents
    Опубликовано: 9 месяцев назад
  • Trump Defends Racist Obama Meme & MAGA Rages Over Bad Bunny’s Spanish Halftime Show | The Daily Show 1 день назад
    Trump Defends Racist Obama Meme & MAGA Rages Over Bad Bunny’s Spanish Halftime Show | The Daily Show
    Опубликовано: 1 день назад
  • Global Chaos, Falling Rupee & India’s Economy | Economic Survey 2026| India’s Chief Economic Advisor 11 дней назад
    Global Chaos, Falling Rupee & India’s Economy | Economic Survey 2026| India’s Chief Economic Advisor
    Опубликовано: 11 дней назад
  • Leaked: THEY Now Control the FED (Most Aren’t Ready) 5 дней назад
    Leaked: THEY Now Control the FED (Most Aren’t Ready)
    Опубликовано: 5 дней назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5