У нас вы можете посмотреть бесплатно Counting Multisets или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we discuss the notion of a multiset, which is an unordered list with repetition, that is, a set where elements can be repeated. We show that counting multisets is equivalent to counting star-bar strings, which is also equivalent to certain combinations. From this, we develop a formula to count multisets using binomial coefficients. Using this, we consider some examples. This is lecture 15 (part 1/3) of the lecture series offered by Dr. Andrew Misseldine for the course Math 3120 - Transition to Advanced Mathematics at Southern Utah University. A transcript of this lecture can be found at Dr. Misseldine's website or through his Google Drive at: https://drive.google.com/file/d/1a5fO... This lecture is based upon Sections 3.8, 4.4, and 4.5 of Book of Proof (https://www.people.vcu.edu/~rhammack/...) by Richard Hammack, from the corresponding sections of A Transition to Advanced Mathematics (https://math.byu.edu/~doud/Transition/) by Darrin Doud and Pace P. Nielsen, and from Dr. Misseldine's own notes. Please post any questions you might have below in the comment field and Dr. Misseldine (or other commenters) can answer them for you. Please also subscribe for further updates.