• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN) скачать в хорошем качестве

Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN) 2 months ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN) в качестве 4k

У нас вы можете посмотреть бесплатно Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Lab 3a. Fundamentals of Machine Learning: K-Nearest Neighbor (KNN)

Summary This video tutorial focuses on the fundamentals of machine learning, particularly on the K-Nearest Neighbors (KNN) algorithm. This simple yet powerful technique is used for both classification and regression tasks. You will begin by understanding the basic principles behind KNN, including how it classifies data points based on the majority label of the nearest neighbors in the feature space. The tutorial will walk you through the process of training a KNN model. You will learn how to prepare your dataset and select the correct number of neighbors (the "K" in KNN). Next, the tutorial will cover how to visualize the decision boundaries of the KNN model, which is crucial in understanding how the algorithm divides the feature space to assign class labels. You will plot these boundaries using Python and libraries like Matplotlib, gaining insight into how KNN generalizes and makes predictions based on the proximity of new data points to its neighbors. By the end of this tutorial, you will have a solid understanding of how KNN works, how to implement it with your own data, and how to interpret its decision boundaries for better decision-making in machine learning tasks. Whether you are working with a classification problem (land cover classification) or a regression problem (predicting house prices based on features), this tutorial provides the foundational knowledge to get you started. Additional Materials: 1. Python Script https://github.com/ck1972/Geospatial-... 2. Access courses at Ai. Geelabs https://aigeolabs.com/courses/ https://aigeolabs.com/sign-up/ 3. Buy 'Explainable Machine Learning for Geospatial Data Analysis: A Data-Centric Approach' book https://aigeolabs.com/books/explainab...

Comments
  • All Machine Learning algorithms explained in 17 min 8 months ago
    All Machine Learning algorithms explained in 17 min
    Опубликовано: 8 months ago
    900848
  • Lab 7a. Explainable Machine Learning in Geospatial Analysis: Land Cover Classification 1 month ago
    Lab 7a. Explainable Machine Learning in Geospatial Analysis: Land Cover Classification
    Опубликовано: 1 month ago
    186
  • Introduction to Generative AI 2 years ago
    Introduction to Generative AI
    Опубликовано: 2 years ago
    2020363
  • Transformers (how LLMs work) explained visually | DL5 1 year ago
    Transformers (how LLMs work) explained visually | DL5
    Опубликовано: 1 year ago
    6231448
  • TorchGeo + U-Net for Building Footprints: Step-by-Step Deep Learning Tutorial (Part II) - Lab 3c 10 days ago
    TorchGeo + U-Net for Building Footprints: Step-by-Step Deep Learning Tutorial (Part II) - Lab 3c
    Опубликовано: 10 days ago
    159
  • Label Studio: The Easiest Way To Annotate Your Datasets 4 months ago
    Label Studio: The Easiest Way To Annotate Your Datasets
    Опубликовано: 4 months ago
    22407
  • Lab 7b. Explainable Machine Learning in Geospatial Analysis: Regression 1 month ago
    Lab 7b. Explainable Machine Learning in Geospatial Analysis: Regression
    Опубликовано: 1 month ago
    390
  • Shallow Neural Networks for Forest Carbon Modeling: Fast & Simple in Python (Lab 2b) 2 weeks ago
    Shallow Neural Networks for Forest Carbon Modeling: Fast & Simple in Python (Lab 2b)
    Опубликовано: 2 weeks ago
    142
  • All Machine Learning Concepts Explained in 22 Minutes 5 months ago
    All Machine Learning Concepts Explained in 22 Minutes
    Опубликовано: 5 months ago
    206019
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19438450

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS