У нас вы можете посмотреть бесплатно Retrieval-Augmented Generation with Knowledge Graphs for Customer Support Q/A (Paper Summary) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#rag #knowledgegraph #customersupport #machinelearning #llms #naturallanguageprocessing In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries. The conventional retrieval methods in retrieval augmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance. We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG). Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and interissue relations. During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers. This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation. Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU. Our method has been deployed within LinkedIn’s customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%. Paper Link: https://arxiv.org/pdf/2404.17723v1 Paper Title: Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering Paper Author: Zhentao Xu, Mark Jerome Cruz, Matthew Guevara, Tie Wang, Manasi Deshpande, Xiaofeng Wang, Zheng Li ⏩ IMPORTANT LINKS Research Paper Summaries: • Simple Unsupervised Keyphrase Extraction u... Enjoy reading articles? then consider subscribing to Medium membership, it is just 5$ a month for unlimited access to all free/paid content. Subscribe now - / membership ********************************************* ⏩ Youtube - / @techvizthedatascienceguy ⏩ LinkedIn - / prakhar21 ⏩ Medium - / prakhar.mishra ⏩ GitHub - https://github.com/prakhar21 ********************************************* ⏩ Please feel free to share out the content and subscribe to my channel - / @techvizthedatascienceguy Tools I use for making videos :) ⏩ iPad - https://tinyurl.com/y39p6pwc ⏩ Apple Pencil - https://tinyurl.com/y5rk8txn ⏩ GoodNotes - https://tinyurl.com/y627cfsa #techviz #datascienceguy #deeplearning #ai #openai #chatgpt #machinelearning #recommendersystems #CustomerServiceTechnicalSupport #EfficientlyResolvingCustomerInquiries #RetrievalAugmentedGeneration #LargeLanguageModels #IssueTrackingTickets #CustomerServiceQuestionAnswering #KnowledgeGraphRetrieval About Me: I am Prakhar Mishra and this channel is my passion project. I am currently pursuing my MS (by research) in Data Science. I have an industry work-ex of 4+ years in the field of Data Science and Machine Learning with a particular focus on Natural Language Processing (NLP).