• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained) скачать в хорошем качестве

Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained) 5 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained) в качестве 4k

У нас вы можете посмотреть бесплатно Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)

Backpropagation is one of the central components of modern deep learning. However, it's not biologically plausible, which limits the applicability of deep learning to understand how the human brain works. Direct Feedback Alignment is a biologically plausible alternative and this paper shows that, contrary to previous research, it can be successfully applied to modern deep architectures and solve challenging tasks. OUTLINE: 0:00 - Intro & Overview 1:40 - The Problem with Backpropagation 10:25 - Direct Feedback Alignment 21:00 - My Intuition why DFA works 31:20 - Experiments Paper: https://arxiv.org/abs/2006.12878 Code: https://github.com/lightonai/dfa-scal... Referenced Paper by Arild Nøkland: https://arxiv.org/abs/1609.01596 Abstract: Despite being the workhorse of deep learning, the backpropagation algorithm is no panacea. It enforces sequential layer updates, thus preventing efficient parallelization of the training process. Furthermore, its biological plausibility is being challenged. Alternative schemes have been devised; yet, under the constraint of synaptic asymmetry, none have scaled to modern deep learning tasks and architectures. Here, we challenge this perspective, and study the applicability of Direct Feedback Alignment to neural view synthesis, recommender systems, geometric learning, and natural language processing. In contrast with previous studies limited to computer vision tasks, our findings show that it successfully trains a large range of state-of-the-art deep learning architectures, with performance close to fine-tuned backpropagation. At variance with common beliefs, our work supports that challenging tasks can be tackled in the absence of weight transport. Authors: Julien Launay, Iacopo Poli, François Boniface, Florent Krzakala Links: YouTube:    / yannickilcher   Twitter:   / ykilcher   Discord:   / discord   BitChute: https://www.bitchute.com/channel/yann... Minds: https://www.minds.com/ykilcher

Comments
  • Self-training with Noisy Student improves ImageNet classification (Paper Explained) 5 лет назад
    Self-training with Noisy Student improves ImageNet classification (Paper Explained)
    Опубликовано: 5 лет назад
  • NeurIPS 2020 Tutorial: Deep Implicit Layers 5 лет назад
    NeurIPS 2020 Tutorial: Deep Implicit Layers
    Опубликовано: 5 лет назад
  • 코틀린중급10 - Timber 1 час назад
    코틀린중급10 - Timber
    Опубликовано: 1 час назад
  • LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры 1 год назад
    LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры
    Опубликовано: 1 год назад
  • BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained) 5 лет назад
    BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
    Опубликовано: 5 лет назад
  • Yoshua Bengio - Deep learning and Backprop in the Brain (CCN 2017) 8 лет назад
    Yoshua Bengio - Deep learning and Backprop in the Brain (CCN 2017)
    Опубликовано: 8 лет назад
  • Путин хочет передать власть. Трампа пытаются сломать. Зачем блокируют телеграм? | Пастухов, Еловский 21 час назад
    Путин хочет передать власть. Трампа пытаются сломать. Зачем блокируют телеграм? | Пастухов, Еловский
    Опубликовано: 21 час назад
  • Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок? 1 месяц назад
    Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?
    Опубликовано: 1 месяц назад
  • Дарио Амодеи — «Мы близки к концу экспоненты» 2 дня назад
    Дарио Амодеи — «Мы близки к концу экспоненты»
    Опубликовано: 2 дня назад
  • [Classic] Deep Residual Learning for Image Recognition (Paper Explained) 5 лет назад
    [Classic] Deep Residual Learning for Image Recognition (Paper Explained)
    Опубликовано: 5 лет назад
  • Лучший документальный фильм про создание ИИ 1 месяц назад
    Лучший документальный фильм про создание ИИ
    Опубликовано: 1 месяц назад
  • How to Create a Neural Network (and Train it to Identify Doodles) 3 года назад
    How to Create a Neural Network (and Train it to Identify Doodles)
    Опубликовано: 3 года назад
  • SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization (Paper Explained) 5 лет назад
    SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization (Paper Explained)
    Опубликовано: 5 лет назад
  • Hopfield Networks is All You Need (Paper Explained) 5 лет назад
    Hopfield Networks is All You Need (Paper Explained)
    Опубликовано: 5 лет назад
  • Genius Physicist: Physics Proves AI Is Inherently Evil! 11 часов назад
    Genius Physicist: Physics Proves AI Is Inherently Evil!
    Опубликовано: 11 часов назад
  • Проблема нержавеющей стали 5 дней назад
    Проблема нержавеющей стали
    Опубликовано: 5 дней назад
  • [Classic] Generative Adversarial Networks (Paper Explained) 5 лет назад
    [Classic] Generative Adversarial Networks (Paper Explained)
    Опубликовано: 5 лет назад
  • Stanford Seminar - Can the brain do back-propagation? Geoffrey Hinton 9 лет назад
    Stanford Seminar - Can the brain do back-propagation? Geoffrey Hinton
    Опубликовано: 9 лет назад
  • Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение 1 год назад
    Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение
    Опубликовано: 1 год назад
  • Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение 8 лет назад
    Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение
    Опубликовано: 8 лет назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5