У нас вы можете посмотреть бесплатно Building a Netflix Recommendation System - Overview или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#deeplearning #recommendations #ai #data #datascience #machinelearning Recommendation Systems is one of the most crucial and essential skills to have as a Data Scientist. See Full Tutorial Here: https://datamenor.ai Subscribe for more free tutorials : / @datamentor In this tutorial, you will build your own Netflix recommendation Sysytem that is capable of effectively recommending movies to users. Note: some students have gone ahead to make this their final year project in Data Science and Machine Learning and received great recognition so I suggest you take it serious and really understand the concepts. You will learn from scratch to advance level the various concepts in recommendation system such as: 1. Recommendation System: An Overview 2. Where Recommender Systems came from 3. Applications of Recommendation Systems 4. Why Recommender Systems? 5. Types of Recommender Systems 6. Popularity based Recommender Systems 7. LAB SESSION: Popularity based Recommender 8. Content-based Filtering: An Overview 9. Cosine Similarity 10. Cosine Similarity with Python 11. Document Term Frequency Matrix 12. LAB SESSION: Building Content-based Recommender Engine 13. Collaborative Filtering: An Introduction 14. Evaluation Metrics for Recommender Systems See Full Tutorial Here: https://datamenor.ai In this tutorial, we will learn everything you need to know to building effective and robust Recommendation Systems. By the end of this tutorial, you will do an awesome project to build your own recommendation system. Subscribe and click notification bell for more videos : https://bit.ly/3xfNeRN RESOURCES: Popularity Based code: https://colab.research.google.com/dri... movies. csv: https://drive.google.com/file/d/1_ed-... ratings. csv: https://drive.google.com/file/d/12yJB... collaborative filtering: https://colab.research.google.com/dri... text file for document term frequency: https://drive.google.com/file/d/1vOTz... bank_full dataset: https://drive.google.com/file/d/1VNGD... lecture slide: https://www.canva.com/design/DAE8kmKA... data 1 processed.ipynb : https://colab.research.google.com/dri... data 2 processed.ipynb : https://colab.research.google.com/dri... data 3 preprocessed : https://colab.research.google.com/dri... data 4 preprocessed : https://colab.research.google.com/dri... data 5 preprocessed : https://colab.research.google.com/dri... Github link for files : https://github.com/MrBriit/Netflix-Re...