У нас вы можете посмотреть бесплатно Fluid Mechanics 11.5 - Friction Factor - Moodys Chart or Diagram - Colebrook and Haaland Formula или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this segment, we discuss how to obtain the friction factor. We show two methods: one based on reading the moody's diagram or chart; second by using two alternative analytical equations (Colebrook and Haaland Formula) Table of Contents 0:16 - Equivalent Roughness 2:26 - Moody's Chart (Diagram) 6:51 - Colebrook and Haaland Formula Module 11: Viscous Flow in Pipes In Modules 5, 6, and 7, we applied the Reynold's Transport Equation to Conservation of Mass, Momentum, and Energy, respectively. In Modules 8 and 9, we studied differential analysis of fluid flow, applied the fundamentals to obtain Conservation of Mass and Momentum equations, respectively In Module 11, we will apply these basic principles to a specific and very important real-life application - the incompressible and compressible flow of viscous fluid in pipes and ducts. You can imagine the wide application space of this module to the mechanical engineering discipline. I would like to bring to your attention that this is the first module, where we discuss compressible flow, viscous flow, and Laminar, Transitional and Turbulent flow regimes. Student Learning Outcomes After completing this module, you should be able to: 1) identify and explain various characteristics of the flow in pipes 2) discuss the main characteristics of laminar and turbulent pipe flows and appreciate their differences 3) calculate losses in straight portions of the pipes (major losses), as well as those in various pipe system components (minor losses) 4) apply appropriate equations and principles to analyze a variety of pipe flow situations. This material is based upon work supported by the National Science Foundation under Grant No. 2019664. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.