У нас вы можете посмотреть бесплатно Predictive Maintenance Using Deep Learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Predictive maintenance allows equipment operators and manufacturers to assess the condition of machines, diagnose faults, and estimate time to failure. Because machines are increasingly complex and generate large amounts of data, many engineers are exploring deep learning approaches to achieve the best predictive results. In this talk, you will discover how to use deep learning for: -Anomaly detection of industrial equipment using vibration data -Condition monitoring of an air compressor using an audio-based fault classifier You’ll also see demonstrations of: -Data Preparation: Generating features using Predictive Maintenance Toolbox™ and extracting features automatically from audio signals using Audio Toolbox™ -Modeling: Training audio and time-series deep learning models using Deep Learning Toolbox™" Chapters: 0:00 Identifying Faults in Audio Data 1:43 Predictive Maintenance Key Takeaways 3:46 Predictive Maintenance Algorithm Development Workflow 4:56 Audio Fault Detection with Deep Learning using an LSTM 12:14: Vibration Anomaly Detection with Deep Learning using an Autoencoder 20:12 Project Results and Predictive Maintenance Success Stories 21:30 Key Takeaways #predictivemaintenance #anomalydetection #deeplearning -------------------------------------------------------------------------------------------------------- Get a free product trial: https://goo.gl/ZHFb5u Learn more about MATLAB: https://goo.gl/8QV7ZZ Learn more about Simulink: https://goo.gl/nqnbLe See what's new in MATLAB and Simulink: https://goo.gl/pgGtod © 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.